Supporting Information

Local Structure and Ions Storage Properties of Vanadate Cathode Materials Regulated by the Pre-Alkalization

Xiaoqiang Shan,^a SaeWon Kim,^a Milinda Abeykoon,^b Gihan Kwon,^b Daniel Olds,^b and Xiaowei Teng^{a, c*}

^aDepartment of Chemical Engineering, University of New Hampshire, Durham, New Hampshire 03824, USA ^bNational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA ^cDepartment of Chemical Engineering, Worcester Polytechnic Institue, Worcester, Massachusettes 01609, USA **Supplementary Figures:**

Figure S1. Lithiation of V_2O_5 bulk material using 0.5 M Li₂SO₄ solution at room temperature.

Figure S2. (a) LiVO compared to standards; TGA and DSC data of (b) LiVO, (c) NaVO, and (d) KVO; SEM images of (e) LiVO, (f) NaVO, and (g) KVO.

Figure S3. (a) Pre-sodiation using $0.5 \text{ M} \text{ Na}_2 \text{SO}_4$ and (b) pre-potassiation using $0.5 \text{ M} \text{ K}_2 \text{SO}_4$ solution of $V_2 O_5$ bulk material at room temperature.

Figure S4. V_2O_5 was stirred in 0.5 M Li₂SO₄ for the various duration of time and various amounts of added V_2O_5 . The NaVO and KVO are obtained by stirring 300 mg of V_2O_5 in 0.5 M Na₂SO₄ or K_2SO_4 solution for three days.

Figure S5. Crystal structures and building polyhedral units of (a) NaVO with [a1, 2] VO_6 octahedral and [a3] VO_5 bipyramid units; (b) KVO with [b1] VO_6 and [b2] bipyramid building units. (VO_5 pyramid in blue and VO_6 octahedral in red, green: Li, blue: V, red: O).

Figure S6. After stirring in different solutions, we obtained the final V2O5, HVO, and (NH4)VO products. (a) V_2O_5 bulk stirred in water as a control sample; (b) V_2O_5 stirred in 0.5 M H₂SO₄; (c) V_2O_5 stirred in 0.5 M (NH₄)₂SO₄ compared to that obtained in K₂SO₄ solution.

Figure S7. Long-term cycling performance of LiVO at a current density of 1 A g⁻¹ for 800 cycles.

Figure S8. (a, c, e) CVs of LiVO, NaVO, and KVO at scan rates from 0.05 mV s⁻¹ to 2 mV s⁻¹; (b, d, f) Kinetics analysis with b-values of LiVO, NaVO, and KVO. C1 and A1 are the first redox peaks of cathodic and anodic scan (empty circles), and C2 and A2 are the second ones (open squares).

Figure S9. GITT test of (a) LiVO with (b) zoom-in potential curve with values, (c) NaVO and (c) KVO at a current density of 0.025 A g^{-1} .

Figure S10. Contour plot of XRD patterns during a CV scan of (a) LiVO, (b) NaVO, and (c) KVO cathodes measured *in situ* Zn-cell (AVO peaks and $Zn_4(OH)_6SO_4\cdot 4H_2O$ peaks are labeled while the latter one as *Italic*).

Supplementary Tables:

Table S1. Refined crystal structural parameters of LiVO material with X-ray PDF fitting with R_{wp} =36.8%. LiVO is expressed as $Li_x(H_y)V_3O_8 \cdot nH_2O$, where lithium and water amount is determined from EDXS and TGA measurements.

Atom	Туре	Х	у	Z	Occ.	Site	Uiso	U ₁₁	U ₂₂	U ₃₃	U ₁₃
V	V1	0.095	0.250	0.185	1.00	2a	0.17	0.194	0.013	0.340	0.201
V	V2	0.847	0.250	0.088	1.00	2a	0.04	0.062	0.031	0.014	0.025
V	V3	0.547	0.250	0.871	1.00	2a	0.13	0.105	0.020	0.275	0.118
Li	Li1	0.296	0.250	0.442	1.00	2a	0.02	0.004	0.022	0.045	0.008
0	01	0.895	0.250	0.900	1.00	2a	0.03	0.005	0.006	0.064	0.001
0	02	0.147	0.250	0.865	1.00	2a	0.16	0.073	0.052	0.331	0.084
0	03	0.460	0.250	0.102	1.00	2a	0.03	0.007	0.013	0.065	0.004
0	O4	0.963	0.250	0.260	1.00	2a	0.04	0.051	0.017	0.053	0.052
0	05	0.239	0.250	0.251	1.00	2a	0.03	0.007	0.053	0.025	0.007
0	06	0.714	0.250	0.190	1.00	2a	0.04	0.003	0.064	0.038	0.008
0	07	0.655	0.250	0.765	1.00	2a	0.03	0.015	0.038	0.038	0.004
0	08	0.365	0.250	0.724	1.00	2a	0.08	0.027	0.019	0.196	0.051
0	09	0.296	0.250	0.442	1.00	2a	0.02	0.004	0.022	0.045	0.008

Refined crystal structural parameters of LiVO

Space group: P 21/m

a=12.453 b=3.642 c=8.664 (Å) α=90 β=95.257 γ=90 (°)

Table S2. Refined crystal structural parameters of NaVO material with X-ray PDF fitting with $R_{wp}=27.9\%$. NaVO is expressed as $Na_{0.24}(H_{0.76})V_3O_8 \cdot 1.48H_2O$, where sodium and water amount is determined from EDXS and TGA measurements.

Atom	Туре	X	у	Z	Occ.	Site	Uiso	U ₁₁	U ₂₂	U ₃₃	U ₁₃
V	V1	0.614	0.250	0.892	1.00	2e	0.12	0.118	0.010	0.173	0.097
V	V2	0.852	0.250	0.197	1.00	2e	0.03	0.019	0.008	0.054	0.024
V	V3	0.914	0.250	0.867	1.00	2e	0.02	0.023	0.005	0.026	0.014
Na	Na1	0.635	0.474	0.469	1.00	4f	0.01	0.013	0.013	0.013	0.003
Na	Na2	0.582	0.420	0.490	1.00	4f	0.02	0.020	0.020	0.020	0.004
Ο	01	0.697	0.250	0.151	1.00	2e	0.03	0.078	0.011	0.003	0.015
Ο	O2	0.999	0.250	0.434	1.00	2e	0.11	0.177	0.008	0.190	0.155
Ο	O3	0.771	0.250	0.982	1.00	2e	0.02	0.026	0.013	0.042	0.032
Ο	O4	0.813	0.250	0.685	1.00	2e	0.06	0.120	0.004	0.071	0.063
0	05	0.027	0.250	0.105	1.00	2e	0.12	0.325	0.000	0.079	0.173
Ο	O6	0.174	0.250	0.780	1.00	2e	0.29	0.705	0.024	0.052	0.185
Ο	O7	0.560	0.250	0.738	1.00	2e	0.05	0.004	0.069	0.057	0.009
Ο	O8	0.404	0.250	0.018	1.00	2e	0.10	0.012	0.010	0.259	0.051
0	09	0.434	0.389	0.500	1.00	4f	0.02	0.023	0.023	0.023	0.005

Refined crystal structural parameters of NaVO

Space group: P 21/m

a=10.214 b=3.602 c=9.312 (Å) α=90 β=100.369 γ=90 (°)

Table S3. Refined crystal structural parameters of KVO material with X-ray PDF fitting with $R_{wp}=20.6\%$. KVO is expressed as $K_{0.9}(H_{0.1})V_3O_8 \cdot 0.04H_2O$, where potassium and water amount is determined from EDXS and TGA measurements.

Atom	Туре	Х	У	Z	Occ.	Site	Uiso	U ₁₁	U ₂₂	U ₃₃	U ₁₃
V	V1	0.455	0.055	0.691	1.00	4f	0.01	0.007	0.010	0.012	0.004
V	V2	0.069	0.750	0.423	1.00	2e	0.01	0.005	0.008	0.008	0.001
Κ	K1	0.032	0.750	0.931	1.00	2e	0.04	0.049	0.013	0.040	0.028
Ο	01	0.107	0.085	0.756	1.00	4f	0.01	0.010	0.023	0.011	0.004
Ο	O2	0.328	0.591	0.503	1.00	4f	0.02	0.011	0.043	0.014	0.001
Ο	O3	0.387	0.056	0.146	1.00	4f	0.02	0.048	0.014	0.003	0.005
Ο	O4	0.070	0.025	0.400	1.00	2e	0.01	0.012	0.007	0.009	0.009
0	05	0.403	0.750	0.253	1.00	2e	0.02	0.029	0.017	0.010	0.016

Refined crystal structural parameters of KVO

Space group: P 21/m

a=4.985 b=8.388 c=7.675 (Å) α =90 β =97.043 γ =90 (°)

Ions	Ionic radius (pm)	Hydrated radius (pm)	Water number in shell	Hydration enthalpy (kJ mol ⁻¹)	Ionic mobility (ohm ⁻¹ cm ² mol ⁻¹)
Li	76	340	5.2	-506	33.5
Na	102	276	3.5	-406	43.5
K	138	232	2.6	-330	64.5
NH ₄	148	N.A.	2.4	N.A.	N.A.

Table S4. Physical properties of monovalent ions.¹

Reference:

1. (a) Wang, Y.; Weinstock, I. A., Polyoxometalate-decorated nanoparticles. *Chemical Society Reviews* **2012**, *41* (22), 7479-7496; (b) Marcus, Y., Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. *Journal of the Chemical Society, Faraday Transactions* **1991**, *87* (18), 2995-2999; (c) Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J., A review of electrolyte materials and compositions for electrochemical supercapacitors. *Chemical Society Reviews* **2015**, *44* (21), 7484-7539.