Supplementary Information

Hierarchically Porous, Biaxially Woven Carbon Nanotube Sheet Arrays for Next-Generation Anion-Exchange Membrane Water Electrolyzers

Ji Eun Park^a, Yung-Eun Sung^{b,c*}, Changsoon Choi^{a*}

^aDepartment of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea

^bCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea

^cSchool of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea

Corresponding Authors

*E-mail: ysung@snu.ac.kr (Y.-E. Sung) and cschoi84@dongguk.edu (C. Choi),

Sample name	Ohmic resistance	Charge-transfer resistance	Mass transport resistance	
NiFeO _x _CNTS	65	177	0.112	
NiFeO _x _NP	126	495	0.228	
Pt_CNTS	75	12.0	0.06	
Pt_NP	99	12.5	0.2	

Table S1. Comparison of ohmic, charge-transfer, and mass transport resistances of four

AEMWEs obtained using the Nyquist plot.

Reference number This work	Cathode material NiFeO x	Cathode loading [mg cm ⁻ ²] 2	Membrane FAA-3-50	Anode material NiFe	Anode loading [mg cm ⁻ ²] 1	Temperatur e [°C] 70	Cell voltage [V] 2.05	Current density [A cm ⁻²] 1480
44	Ni ₁₂ P ₅ Ni ₃ (PO ₄) ₂	3	YAB	Ni ₁₂ P ₅ Ni ₃ (PO ₄) ₂	3	50	2.05	650
46	Ni	0.18	FAA-3-50	CuCoO	0.4 40		2.05	75
47	Ni	1.45	FAA-3-50	Ni	1.45	40	2.05	60
45	NiCoS	-	Nafion	IrO2	-	50	2.05	610
48	NiCoO-NiCo/C	1.5	X37-50	CuCoO	30	50	1.85	504
49	NiCu	5	Fumapem- 3-pe-30	Ir	3	50	1.9	1350
50	Ni	0.38	FAA-3-50	CuCoO	0.4	_	2.05	110
51	NiFeCo-P	-	X37-50	NiFeO	-	50	1.72	500
52	NiMnO	1	Fumapem- 3-pe-30	NiCoFe	3	50	2.0	1150
53	Ni/(CeO ₂ - La ₂ O ₃)/C	2.7	A201	ACTA 3030	-	_	1.9	300
54	Ni/(CeO ₂ - La ₂ O ₃)/C	7.4	A201	ACTA 3030	30	60	1.9	350

Table S2. Comparison of AEMWE performances using the non-noble metal-based HER

catalysts reported in the literature⁴⁴⁻⁵⁴ and in this work.

Reference number	Cathode material	Cathode loading [mg cm ⁻²]	Membrane	Anode material	Anode loading [mg cm ⁻²]	Temperatur e [°C]	Cell voltage [V]	Current density [A cm ⁻²]
This work	Pt	2	FAA-3-50	NiFe	1	70	2.05	4000
55	PtNi/CP	0.001856	A201	Ni/CP	0.00851	50	1.9	250
57	RuSe ₂	2	FAA-3-50	IrO ₂	2.5	80	1.8	730
56	TNTA+Pd	1.7	A201	IrO ₂	5	60	2.05	1000
58	Pt/C	-	A201	IrO ₂	-	50	1.8	1030
59	Pt/C	0.4	FAA-3-50	IrO ₂	2	70	2.05	2400
60	Pt/C	1	FAA-3-50	IrO ₂	0.5	80	1.73	1000
61	Pt/C	1		CuCoO		40	1.9	2250
62	Pt/C	1		CuCoO	0.2	45	1.9	1900
63	Pt/C	1	X37-50	COO-NP	3	50	2.0	1150
7	Pt/C	1	X37-50	NiFeOx		-	1.9	2000
64	Pt/C	-	X37-50	NiFeV	3.95	50	1.9	2850

Table S3. Comparison of AEMWE performances using the noble metal-based HER catalysts

reported in the literature^{7,55-64} and in this work.

Figure S1. Photograph of process: (a) drawing carbon nanotube sheet (CNTS) from the vertically aligned carbon nanotube (VACNT) forest and (b) resulting single CNTS array.

Figure S2. X-ray diffraction (XRD) patterns of SUS paper.

Figure S3. Contact angles of four electrodes: (a) NiFeO_x_CNTS, (b) NiFeO_x_NP, (c) Pt_CNTS, and (d) Pt_NP.

Figure S4. Cyclic voltammograms of NiFeO_x_CNTS and NiFeO_x_NP.

Figure S5. Cyclic voltammograms of Pt_CNTSs and Pt_NPs.

Figure S6. Polarization curves for AEMWE using Pt_CNTS, Pt_NP (Pt black), and 40 wt.% Pt/C.

Figure S7. Comparison of polarization curves of two AEMWEs ((a) NiFeO_x_CNTS and (b) Pt_CNTS) before and after the durability test.