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Abbreviations of Chemicals

Table S1: Abbreviations for a selection of chemicals used in the discharge experiments.

Abbreviation IUPAC Name

ACES 2-[(2-amino-2-oxoethyl)amino]ethanesulfonic acid
BES 2-[bis(2-hydroxyethyl)amino]ethanesulfonic acid
CAPS 3-(cyclohexylamino)propane-1-sulfonic acid
CHES 2-(cyclohexylamino)ethanesulfonic acid
DTPA 2-[bis[2-[bis(carboxymethyl)amino]ethyl]amino]acetic acid
EDTA 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid
EGTA 2-[2-[2-[2-[bis(carboxymethyl)amino]ethoxy]ethoxy]ethyl-

(carboxymethyl)amino]acetic acid
HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
MES 2-morpholin-4-ylethanesulfonic acid
MOPS 3-morpholin-4-ylpropane-1-sulfonic acid
NTA 2-[bis(carboxymethyl)amino]acetic acid
TAPSO 3-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]-2-

hydroxypropane-1-sulfonic acid
TES 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic

acid
TIRON 4,5-dihydroxybenzene-1,3-disulfonic acid

Hyperparameter Tuning

Table S2: Hyperparameter tuning results for the SOAP-based S-model and distinct
descriptor-based D-model. Parameter definitions and their associated equations are based
on Musil et al.1 and Helfrecht et al.2

Parameter SK DK

cutoff radius rc 8.0 –
Gaussian width ξ 0.3 –

power ζ 2.0 –
regularization parameter γ 0.05 0.30

mixing parameter α 0.5 0.5
number of features n – 12
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Feature Selection

Figure S1: RMSE with respect to the number of features, as determined by CUR matrix
decomposition and 5-fold cross validation. Results are shown for different mixing factors
used to balance the KPCA and KRR components of the KPCovR model. Training and test
errors are marked as blue and orange, respectively. Model training on 12 features leads to a
minimal test error for DP and UE.
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Uncertainty Estimation

Figure S2: Uncertainty estimation for the predictions of SK and DK. (a) M random subsets
are selected from the training dataset and used to train the same amount of M S-models
and D-models. The target is predicted by the committee model, defined as the average of
all M subset predictions. The single point uncertainty can be calculated and calibrated as
described by Musil et al. 1 1 and Imbalzano et al. 3 .3 (b) Distribution of features for M = 50
subset models during training of DK . For each subset model, 12 features were selected by
CUR matrix decomposition.
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Discharge Experiments

Figure S3: Discharge curves for the conduced discharge experiments. The x-axes show the
time in hours, the y-axes the discharge potential in V vs. Ag/AgCl. Multiple colors indicate
multiple runs of the same experiment. The fluctuations in the discharge behaviour can be
attributed to the formation of surface films during discharge.
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Figure S4: Discharge curves for the conduced discharge experiments. The x-axes show the
time in hours, the y-axes the discharge potential in V vs. Ag/AgCl. Multiple colors indicate
multiple runs of the same experiment.
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Figure S5: Discharge curves for the conduced discharge experiments. The x-axes show the
time in hours, the y-axes the discharge potential in V vs. Ag/AgCl. Multiple colors indicate
multiple runs of the same experiment.
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Discussion on Experiments

In the experiment, compound II.1 (4-isopropylbenzoic acid) showed unusual discharge be-

havior, resulting in an abnormal discharge potential (DP). The results from three parallel

discharge tests are shown in Figure S6.

Figure S6: Discharge curves for compound II.1 (4-isopropylbenzoic acid).

The DP of a Mg-0.15Ca anode in 4-isopropylbenzoate-containing electrolyte continuously

jumps between -1.2 and -0.2 V vs. Ag/AgCl. 4-isopropylbenzoate is reported as an efficient

corrosion inhibitor for pure Mg and AZ-series Mg alloys.4 It is very likely that the gradual

positive shift of discharge potential is caused by the formation of a passive and dense deposit

layer on the electrode surface. The sudden negative shift of discharge potential is due to

the self-peeling of this deposit layer after the accumulation of discharge products on the

electrode surface. During the experiment, layer formation (voltage drop) and self-peeling

(voltage rise) alternate, leading to the observed discharge behavior.
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Comparison of Structure-Activity Landscapes

Figure S7: Structure-activity landscapes as derived from a SOAP kernel determined for
49 battery additives (black-rimmed dots) and 491 chemical compounds of a commercial
database. In contrast to a combination of kernel principal component analysis (KPCA)
and kernel ridge regression (KRR), similarity maps derived from kernel principal covari-
ates regression (KPCovR) already incorporate the target property (here DP) in the two-
dimensional projection. Hence, interpretations of underlying structure-activity relationships
are facilitated and more intuitive.
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