Supporting Information

Modulating Electronic Structure of Triazine-based Covalent Organic Frameworks for Photocatalytic Organic Transformations

Zhangjie Gu, Jinjian Wang, Zhen Shan, Miaomiao Wu, Tongtong Liu, Liang Song, Guixiang Wang, Xuehai Ju, Jian Su,* and Gen Zhang*

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.

Table of Content

S1. Materials and measurements	4
Materials.	4
Measurements.	4
S2. Experimental procedures	6
Synthesis of 5-Bromothiophene-2-carbonitrile	6
Synthesis of 2,4,6-Tris(5-bromothiophene-2-yl)-1,3,5-triazine	6
Synthesis of 5,5',5"-(1,3,5-triazine-2,4,6-triyl) tris(thiophene-2-carbaldehyde) (3TT)	6
Figure S1. ¹ H NMR spectrum of 3TT	7
Figure S2. The photo of COFs. (a) COF-NUST-31, (b) COF-NUST-32, (c) COF-NUST-33.	8
S3. Supplementary characterization.	8
Figure S3. FTIR spectra of COF-NUST-31, 3TT, and TAPT.	8
Figure S4. FTIR spectra of COF-NUST-32, 3TT, and TAPB.	8
Figure S5. FTIR spectra of COF-NUST-33, 3TT, and TPA.	9
Figure S6. ¹³ C-NMR spectrum of COF-NUST-31	9
Figure S7. ¹³ C-NMR spectrum of COF-NUST-32	9
Figure S8. ¹³ C-NMR spectrum of COF-NUST-33	10
Figure S9. XPS spectra of COF-NUST-31. (a) Survey, (b) N 1s, (c) C 1s, and (d) S 2p	10
Figure S10. XPS spectra of COF-NUST-32. (a) Survey, (b) N 1s, (c) C 1s, and (d) S 2p	11
Figure S11. XPS spectra of COF-NUST-33. (a) Survey, (b) N 1s, (c) C 1s, and (d) S 2p.	11
Figure S12. Simulated PXRD patterns and top views for AB stacking of COF-NUST-31 (a) (b), COF-NUST-3 and COF-NUST-33 (e) (f)	32 (c) (d), 12
Table S1. Fractional atomic coordinates for simulated COF-NUST-31.	13
Table S2. Fractional atomic coordinates for simulated COF-NUST-32.	14
Table S3. Fractional atomic coordinates for simulated COF-NUST-33.	15
Figure S13. (a) N ₂ adsorption-desorption isotherms at 77 K of COFs powders. Pore size distribution of COF-N(b), COF-NUST-32 (c), and COF-NUST-33 (d).	NUST-31
Figure S14. TGA curves of COFs.	
Figure S15. PXRD patterns at different conditions for COF-NUST-31.	
Figure S16. Scanning electron microscopy (SEM) images of COF-NUST-31	
Figure S17. Scanning electron microscopy (SEM) images of COF-NUST-32	
Figure S18. Scanning electron microscopy (SEM) images of COF-NUST-33	

Figure S19. Transmission electron microscopy (TEM) images of COF-NUST-31	18
Figure S20. Transmission electron microscopy (TEM) images of COF-NUST-32	18
Figure S21. Transmission electron microscopy (TEM) images of COF-NUST-33	19
Figure S22. The UV-vis diffuse reflectance spectroscopy of monomers.	19
Figure S23. Mott-Schottky plots of COFs at frequencies of 1000 Hz.	19
Figure S24. TRPL spectrum for COF-NUST-31.	20
Figure S25. TRPL spectrum for COF-NUST-32.	20
Figure S26. TRPL spectrum for COF-NUST-33.	20
Figure S27. LSV curves under visible light irradiation.	21
Figure S28. LSV curves under dark	21
Table S4. The calculated HOMO-LUMO gaps of COFs (in eV)	21
Figure S29. HOMO of COF-NUST-32 and COF-NUST-33.	22
Figure S30. LUMO of COF-NUST-32 and COF-NUST-33	22
Figure S31. (a) The recycling ability of COF-NUST-31 in selective aerobic oxidation of sulfide. (b) PXRD of recover COF-NUST-31. (c) Fourier transform infrared (FTIR) spectra of recovered COF-NUST-31. (d) Scanning electron	red
microscopy (SEM) images of recovered COF-NUST-31.	23
Figure S32. O_2^- and O_2^- signal attenuation after adding PhSMe under elongated light illumination time	23
Table S5. Photocatalytic performances in this work compared with previous results based on inorganic or organic materials in the literatures.	24
S4. Photocatalytic performances of ¹ H-NMR spectra	25
S5. Reference	29

S1. Materials and measurements

Materials.

All the chemicals are commercially available and used without further purification. 1,3,5-tris (4-aminophenyl) benzene (TAPB), 1,3,5-tri(4formylphenyl) benzene (TFP), and tris(4-Aminophenyl) amine (TPA) energy chemical (Shanghai, China). Nafion mixture was purchased from Integrity technology (Shanghai, China). FTO Conductive glass was purchased from South China Xiang Cheng Technology (Yi yang, China), n-

BuLi was purchased from j&k.

Measurements.

nuclear magnetic resonance (NMR): Liquid state ¹H ¹³C NMR spectra of all the samples were collected on a Bruker Advance III instrument with AS500 magnet equipped with a cryoprobe (300 MHz).

Fourier transform infrared (FT-IR): Fourier transform infrared (FT-IR) spectra in the range of 4000 to 500 cm-1 were collected by Universal ATR accessory.

X-ray photoelectron spectroscopy (XPS): X-ray photoelectron spectroscopy (XPS) spectra were obtained by the Kratos axis supraTM of Shimadzu.

PXRD: PXRD patterns were collected on a Bruker D8 Advance diffractometer operated at 40 kV and 40 mA using Cu Kα radiation and in the range of 2-30°, the structure of COFs was simulated by Material Studio Software.

Scanning electron microscope (SEM): SEM images were collected using a Helios G4 CX.

Transmission electron microscope (TEM): TEM images were collected using a JEM-2800.

Gas adsorption: N₂ adsorption and desorption of COFs were performed at 77 K using ASAP 2020, Micromeritics Instrument Corp, USA. Pore size distributions and pore volumes were derived from the adsorption isotherms.

Thermogravimetric analysis (TGA): Thermogravimetric analysis (TGA) was carried out on the DTG-60AH from 30 to 800 °C under N₂ with a heating rate of 10 °C min⁻¹.

UV-Vis spectroscopy (UV-vis): The ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) was conducted on Shimadzu UV-2600 tested from 220 to 800 nm.

The time-resolved photoluminescence (TRPL): The time-resolved photoluminescence (TRPL) was carried on Edinburgh, UK FS5.

The electron paramagnetic (EPR) measurements: 10mg COFs powder was dispersed in 10ml solvent, after dispersion, taking 200 μ l of sample solution and adding 10 μ l of DMPO or TEMPO, mix well and load the sample for test on Bruker A300/E500 at room temperature with light irradiation using a 300 W Xe lamp.

Photoelectrochemical measurements: Photoelectrochemical measurements were performed on an electrochemical workstation (CHI 660E, CH Instruments Inc., Shanghai). The preparation method of the working electrode is as follows: First, weigh 5 mg of COFs and put it into the quartz glass vial, adding 1ml ethanol and 30 μ l Nafion mixture solution, subsequently, ultrasound for 60 minutes. Then, 100 μ l mixture was transferred into the FTO with 1 × 1 cm² illuminated area and dried at 80 °C for 8 h. Platinum electrode as the auxiliary electrode, Ag/AgCI electrode as reference electrode, Na₂SO₄ (0.2 M) solution was used as the electrolyte solution. Mott–Schottky (M–S) plots were recorded from -1.2 V to 1.2 V at a scan rate of 5 mV/s in the dark at frequencies of 1000 Hz. Liner sweep voltammetry (LSV) curves were recorded at a scan rate of 0.01 V/s from–0.8 to 0.3 V in the light. The on–off transient photocurrent responses were recorded with a sampling interval of 20 s using a 300 W (100 Mw/cm²) Xe lamp with a 400 nm-cut filter lamp and a certain applied bias of 0 V. Electrochemical impedance spectroscopy measurements were recorded 10 mV amplitude with over a 0.01 to 10⁶ Hz frequency range.

S2. Experimental procedures

Synthesis of 5-Bromothiophene-2-carbonitrile.

5-bromothiophene-2-carboxaldehyde (10 g, 52.5 mmol) was dissolved in THF (35 ml), and aqueous ammonia (ca. 28 %, 105 mL). Then iodine was added slowly (15 g, 57.6 mmol), The reaction mixture was stirred for 12 h at room temperature, and then quenched with an aqueous $Na_2S_2O_3$ (ca. 5%, 40 mL). The product was extracted with DCM. The organic layer wash with water for many times and dried over anhydrous $MgSO_4$. the residue was purified by silica gel column chromatography (eluent: DCM/hexane = 3:1, v/v), and dried under vacuum to yield 5-Bromothiophene-2-carbonitrile as a light-yellow oil (yield = 8.9 g, 90%).

Synthesis of 2,4,6-Tris(5-bromothiophene-2-yl)-1,3,5-triazine.

To a stirred solution of 5-Bromothiophene-2-carbonitrile (3.17 g, 16.86 mmol) in dry CH_2CI_2 (80 mL), then trifluoromethanesulfonic acid (2.53 g, 16.86 mmol) was added at 0 °C. The mixture was stirred for 36 h at room temperature. After the solvent was removed, the residue was neutralized with an aqueous NaHCO₃. The formed precipitate was collected by filtration, washed with water, methanol, acetone, and hexane in this order, and then dried under vacuum to afford 2 as an off-white solid (yield = 2.6 g, 82 %).

Synthesis of 5,5',5"-(1,3,5-triazine-2,4,6-triyl) tris(thiophene-2-carbaldehyde) (3TT).

2,4,6-Tris(5-bromothiophene-2-yl)-1,3,5-triazine (0.6 g 1.06 mmol) was dissolved in dry THF (120 ml) and keep temperature at -78 $^{\circ}$ C. Then n-BuLi (1.68 mL, 2.4 M in hexane) was added dropwise ,after 2 h at -78 $^{\circ}$ C, the dry DMF was added dropwise, and then the reaction mixture was warmed up slowly to ambient temperature overnight. The reaction was quenched with water. Subsequently, the solvent was removed and extracted with DCM. The residue was purified by silica gel column chromatography (eluent: DCM) to give a yellow solid (yield = 98 mg, 22 %). ¹H NMR (500 MHz, CDCl₃): δ 10.04 (s,3H). 8.36-8.35 (d, 3H). 7.88-7.87 (d, 3H).

Figure S1. ¹H NMR spectrum of 3TT.

Figure S2. The photo of COFs. (a) COF-NUST-31, (b) COF-NUST-32, (c) COF-NUST-33.

S3. Supplementary characterization.

Figure S3. FTIR spectra of COF-NUST-31, 3TT, and TAPT.

Figure S4. FTIR spectra of COF-NUST-32, 3TT, and TAPB.

Figure S5. FTIR spectra of COF-NUST-33, 3TT, and TPA.

Figure S6. ¹³C-NMR spectrum of COF-NUST-31.

Figure S7. ¹³C-NMR spectrum of COF-NUST-32.

Figure S8. ¹³C-NMR spectrum of COF-NUST-33.

Figure S9. XPS spectra of COF-NUST-31. (a) Survey, (b) N 1s, (c) C 1s, and (d) S 2p.

Figure S10. XPS spectra of COF-NUST-32. (a) Survey, (b) N 1s, (c) C 1s, and (d) S 2p.

Figure S11. XPS spectra of COF-NUST-33. (a) Survey, (b) N 1s, (c) C 1s, and (d) S 2p.

Figure S12. Simulated PXRD patterns and top views for AB stacking of COF-NUST-31 (a) (b), COF-NUST-32 (c) (d), and COF-NUST-33 (e) (f).

Space group: P3				
3D hexagonal; $a = b = 24.34$ Å, $c = 3.43$ Å; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$				
Atom	х	У	Z	
N1	-0.28857	-0.68586	1.21966	
C2	-0.26872	-0.62332	1.22007	
C3	-0.20175	-0.57769	1.16204	
C4	-0.17832	-0.51361	1.11677	
C5	-0.11543	-0.48283	1.02536	
C6	-0.09275	-0.52438	1.00263	
S7	-0.14719	-0.60124	1.09829	
C8	-0.02854	-0.50666	0.88762	
N9	0.00971	-0.4505	0.75496	
C10	0.073	-0.42889	0.62491	
C11	0.11404	-0.3638	0.58913	
C12	0.17722	-0.34036	0.48822	
C13	0.20006	-0.38206 0.41766		
C14	0.15799	-0.44748	0.43308	
C15	0.09497	-0.47079	0.5334	
C16	0.26803	-0.35764	0.35605	
N17	0.291	-0.39784	0.35614	
H18	-0.20612	-0.49044	1.13962	
H19	-0.08775	-0.43254	0.96992	
H20	-0.01434	-0.54186 0.91639		
H21	0.09745	-0.3311	0.65217	
H22	0.20839	-0.28964	0.47626	
H23	0.17387	-0.48084	0.37333	
H24	0.06415	-0.52146	0.53834	

Table S2. Fractiona	I atomic coordinates for simulated COF-NUST-32.
---------------------	---

Space group: P3				
3D hexagonal; $a = b = 24.28$ Å, $c = 3.42$ Å; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$				
Atom	у	Z		
C1	-0.27168	-0.61945	0.05478	
N2	-0.31887	-0.60515 0.056		
C3	-0.20583	-0.56954	0.11147	
C4	-0.1866	-0.50578	0.15198	
C5	-0.12368	-0.47111	0.25148	
C6	-0.09738	-0.5098	0.28644	
S7	-0.14768	-0.5881	0.19053	
C8	-0.03271	-0.48892	0.41071	
N9	0.00622	-0.43031	0.50673	
C10	0.07041	-0.40863	0.62543	
C11	0.11677	-0.34588	0.54753	
C12	0.181	-0.32618	0.60125	
C13	0.19992	-0.36842	0.75313	
C14	0.15202	-0.42971	0.86514	
C15	0.08847	-0.45007	0.79262	
C16	0.26845	-0.35027	0.77926	
C17	0.28624	-0.39721	0.78137	
H18	-0.21738	-0.48567	0.12095	
H19	-0.0987	-0.42037	0.30565	
H20	-0.01791	-0.52421	0.41063	
H21	0.10344	-0.31352	0.41795	
H22	0.21496	-0.27904	0.50051	
H23	0.16266	-0.46274	1.01081	
H24	0.0537	-0.49823	0.87261	
H25	0.25012	-0.44651	0.77663	

Table S3. Fractional atomic coordinates for simulated COF-NUST-33.
--

Space group: P3					
3D hexagonal; $a = b = 21.32$ Å, $c = 4.05$ Å; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$					
Atom	х	y z			
C1	0.73804	0.38519	0.50336		
N2	0.68611	0.40437	0.50145		
C3	0.81323	0.43952	0.42626		
C4	0.83777	0.51301	0.40127		
C5	0.90531	0.54938	0.26004		
C6	0.93007	0.50246	0.17895		
S7	0.87285	0.41409	0.28264		
C8	0.99861	0.52363	0.01171		
N9	0.04384	0.59103 -0.058			
C10	0.11437	0.61498	-0.19581		
C11	0.17139	0.68231	-0.09819		
C12	0.24287	0.70086	-0.16646		
C13	0.25911	0.65357	-0.34468		
C14	0.20042	0.5899	-0.47566		
C15	0.12907	0.56985	-0.39621		
H18	0.80667	0.53864	0.47035		
H19	0.93421	0.60716	0.21033		
H20	1.01281	0.48192	-0.02947		
H21	0.16083	0.71798	0.05438		
H22	0.28484	0.75115	-0.06686		
H23	0.20943	0.55216	-0.61522		
H24	0.08587	0.51794	-0.48244		
N	0.33333	1.66667	0.63226		

Figure S13. (a) N₂ adsorption-desorption isotherms at 77 K of COFs powders. Pore size distribution of COF-NUST-31 (b), COF-NUST-32 (c), and COF-NUST-33 (d).

Figure S14. TGA curves of COFs.

Figure S15. PXRD patterns at different conditions for COF-NUST-31.

Figure S16. Scanning electron microscopy (SEM) images of COF-NUST-31.

Figure S17. Scanning electron microscopy (SEM) images of COF-NUST-32.

Figure S18. Scanning electron microscopy (SEM) images of COF-NUST-33.

Figure S19. Transmission electron microscopy (TEM) images of COF-NUST-31.

Figure S20. Transmission electron microscopy (TEM) images of COF-NUST-32.

Figure S21. Transmission electron microscopy (TEM) images of COF-NUST-33.

Figure S22. The UV-vis diffuse reflectance spectroscopy of monomers.

Figure S23. Mott-Schottky plots of COFs at frequencies of 1000 Hz.

Figure S24. TRPL spectrum for COF-NUST-31.

Figure S25. TRPL spectrum for COF-NUST-32.

Figure S26. TRPL spectrum for COF-NUST-33.

Figure S27. LSV curves under visible light irradiation.

Figure S28. LSV curves under dark.

Table S4. The calculated HOMO-LUMO gaps of COFs (in eV)

	COF-NUST-31	COF-NUST-32 COF-NUST-33	
НОМО	-2.44	-1.85 -1.47	
LUMO	-0.42	-0.17 -0	
Band gap	2.01	1.68	1.13

COF-NUST-32

COF-NUST-33

Figure S29. HOMO of COF-NUST-32 and COF-NUST-33.

Figure S30. LUMO of COF-NUST-32 and COF-NUST-33.

Figure S31. (a) The recycling ability of COF-NUST-31 in selective aerobic oxidation of sulfide. (b) PXRD of recovered COF-NUST-31. (c) Fourier transform infrared (FTIR) spectra of recovered COF-NUST-31. (d) Scanning electron microscopy (SEM) images of recovered COF-NUST-31.

Figure S32. O_2^- and O_2^- signal attenuation after adding PhSMe under elongated light illumination.

Table S5. Photocatalytic performances in this work compared with previous results based on inorganic or organic materials in the literatures.

			O ₂				
Catalyst	Catalyst weight	Substrate	Pressue	Light	Time	Yield (%)	Reference
	(mg)	Amount (mmol)	(atm)	source	(h)		
		0.3 mmol					1
ARS-TiO ₂	9.6 mg	and 0.006 mmol	1 atm O ₂	300 W	3	84	
		TEMPO		Xe lamp			
				12 W			2
polyimide-P25	25 mg	0.3 mmol and	1atm air	blue	2	94	
		0.036 mmol ETA		light			
				30 W			3
$Bi_4O_5Br_2$	20 mg	0.2 mmol	1 atm O ₂	blue	6	99	
				light			
							4
TiO2	40 mg	0.3 mmol	1 atm O ₂	300 W	5	58	
				Xe lamp			
				12 W			5
Ti-MCM-48	25 mg	0.5 mmol and ARS	1 atm air	green	1.1	91	
		(0.001 mmol)		light			
				100 W			6
CF-HCP	5 mg	0.2 mmol	1 atm O ₂	Green	6	99	
				light			
							7
BBT@	5 mg	1 mmol	1 atm O ₂	Blue	20	99	
TiO ₂ -0.8				light			
							8
AQ-COF	10 mg	0.1 mmol	1 atm O ₂	300 W	3	99	
				Xe lamp			
				30 W			
COF-NUST-32	4 mg	0.1 mmol	1 atm O ₂	Blue	4	98	This
				light			work

S4. Photocatalytic performances of ¹H-NMR spectra.

S5. Reference

- 1. X. J. Lang, J. C. Zhao and X. D. Chen, *Angew. Chem. , Int. Ed.*, 2016, **55**, 4697-4700.
- 2. W. L. Sheng, J. L. Shi, H. M. Hao, X. Li and X. J. Lang, J. Colloid Interf Sci., 2020, 565, 614-622.
- 3. W. Zhao, C. X. Yang, J. D. Huang, X. L. Jin, Y. Deng, L. Wang, F. Y. Su, H. Q. Xie, P. K. Wong and L. Q. Ye, *Green Chem.*, 2020, **22**, 4884-4889.
- 4. X. J. Lang, W. Hao, W. R. Leow, S. Z. Li, J. C. Zhao and X. D. Chen, *Chem. Sci.*, 2015, **6**, 5000-5005.
- 5. F. W. Huang, H. M. Hao, W. L. Sheng, X. Y. Dong and X. J. Lang, *Chem. Eng. J.*, 2022, **432**, 134285.
- 6. Y. F. Zhi, K. Li, H. Xia, M. Xue, Y. Mu and X. M. Liu, J. Mater. Chem. A., 2017, 5, 8697-8704.
- 7. C. Ayed, W. Huang, R. Li, L. C. da Silva, D. Wang, O. Suraeva, W. Najjar and K. A. I. Zhang, Part. Part. Syst. Charact., 2018, 35, 1700234.
- 8. Q. Li, X. W. Lan, G. Y. An, L. Ricardez-Sandoval, Z. G. Wang and G. Y. Bai, ACS. Catal., 2020, **10**, 6664-6675.