Supplementary information

Boosting C₂H₂/CO₂ Separation of Metal-Organic Frameworks via

Anion Exchange and Elevating Temperature

Ting Wang,^{a#} Wei Mei,^{b#} Pengfei Li,^{a,c#} Yun-Lei Peng,^a Yao Chen,^e Jian-Gong Ma,^a

Peng Cheng,^{ad} Ming Fang,^{c*} Kuang Yu,^{b*} Zhenjie Zhang^{ade*}

Single Crystal X-ray diffraction structure analysis

Single crystal diffraction data of **NKMOF-2-BF**⁴ were collected at 120 K under an Oxford Cryo stream system on a SuperNova (Mo) X-ray Source with micro-focus sealed X-ray tube. The structures were solved using the direct method and refined with the full-matrix least-squares technique using the 'XS' and 'XL' program package. Due to the presence of highly disordered guest molecules in the pore, "SQUEEZE" operation of Platon software was applied to all seven sets of crystal data. All nonhydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms on the ligands were placed in idealized positions and refined using a riding model. Hydrogen in μ_3 -OH is added by hydrogenated manually, and the distance between hydrogen and oxygen and copper atoms are limited by DFIX instructions. The detailed crystallographic data and structure refinement parameters are summarized in Table S1 (CCDC: 1982349)

Fitting of single-component adsorption isotherms

The single-component adsorption isotherms for C_2H_2 and CO_2 in NKMOF-2-Cl and NKMOF-2-BF₄ were determined by fitting the adsorption isotherms at 298 K for the respective adsorbates to the dual-site Langmuir–Freundlich (DSLF) equation,¹ The DSLF equation was given by:

$$q = q_{A,sat} \frac{b_A P^{n_A}}{1 + b_A P^{n_A}} + q_{B,sat} \frac{b_B P^{n_B}}{1 + b_B P^{n_B}}$$

where *q* is the uptake (in mmol g⁻¹), *P* is the pressure (in kPa), $q_{A,sat}$ and $q_{B,sat}$ are the saturation uptakes (in mmol g⁻¹) for sites 1 and 2, b_A and b_B are the affinity coefficients (in kPa⁻¹) for sites 1 and 2, and n_A and n_B represent the deviations from the ideal homogeneous surface. The single-component adsorption isotherms for C₂H₂ and CO₂ were fitted by the above form of DSLF equation.² The fitting parameters were displayed in **Table S6-7**.

Isosteric Heat of Adsorption

A virial-type expression comprising the temperature-independent parameters a_i and b_j was employed to calculate the enthalpies of adsorption for CO₂ and C₂H₂ (at 273 K and 298 K) on NKMOF-2-Cl and NKMOF-2-BF₄. In each case, the data were fitted use equation:

$$LnP = LnN + \frac{1}{T}\sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j$$
$$Q_{st} = -R\sum_{i=0}^{m} a_i N^i$$

Here, P is the pressure expressed in bar, N is the amount absorbed in mmol g⁻¹, T is the temperature in K, a_i and b_j are virial coefficients, and m, n represent the number of coefficients required to adequately describe the isotherms (m and n were gradually increased till the contribution of extra added a and b coefficients was deemed to be statistically insignificant towards the overall fit. And the average value of the squared deviations from the experimental values was minimized).

 $Q_{\rm st}$ is the coverage-dependent isosteric heat of adsorption and R is the universal gas

constant. The heat enthalpy of gas sorption for NKMOF-2-Cl and NKMOF-2-BF₄ in this manuscript are determined by using the sorption data measured in the pressure range from 0 - 1 bar (273 K and 298 K).

IAST selectivity calculation

In order to compare the C_2H_2/CO_2 separation performance of various MOFs, IAST calculations of mixture adsorption were performed. For separation of a binary mixture of components A and B, the adsorption selectivity is defined by

$$S_{abs} = \frac{q_A/q_B}{y_A/y_B}$$

Calculation of the kinetic amount based on breakthrough curves

The gas adsorption capacity during the breakthrough experiments was calculated by the following equations:³

$$q_i = \frac{C_i V}{m} \times \int_0^t (1 - \frac{F}{F_0}) dt$$

Where q_i is the equilibrium adsorption capacity of gas i (cm³ g⁻¹), C_i is the feed gas concentration, V is the volumetric feed flow rate (cm³ min⁻¹), t is the adsorption time (min), F₀ and F are the inlet and outlet gas molar flow rates, respectively, and m is the mass of the adsorbent (g).

Computational Details

All the Density Functional Theory (DFT) simulations were performed using the Vienna ab initio simulation package (VASP) in conjunction with the van der Waals (*vdw*) corrected optPBE-*vdW* functional and the projector augmented wave (PAW) method.⁴⁻⁸ A Hubbard-type on-site U correction was applied on the Cu *d* states, with the U and J parameters setting to 8 and 1 eV, respectively.⁹ The energy cutoff on the wave function was set to 400 eV. We used only the gamma point to sample the Brillouin Zone, which is a reasonable scheme for studying insulators with large unit cells. All the geometry optimizations were performed using a 10^{-4} eV/atom energy threshold, and all forces were converged within 0.01 eV/Å.

Due to Pulay stress, **NKMOF-2** cannot be optimized directly as it will collapse into unphysical nonporous geometries. Therefore, we applied an artificial anisotropic internal stress to counterbalance the artifacts caused by Pulay stress. We gradually increase the magnitude of the artificial internal stress, so the box volume expands correspondingly. The optimal box dimensions and geometry were obtained when the lattice energy (without the artificial PV term) reaches its minimum. The lattice energy change with respect to the internal stress are shown in **Fig. S18**. The internal stress corresponding to the minimal energy of **NKMOF-2-CI** and **NKMOF-2-BF4** was 20 and 27.5 kbar, respectively. Both the obtained structures of **NKMOF-2-CI** and **NKMOF-2-BF4** corresponding to the minimum energy are in excellent agreement with the experimental results.

Density functional theory (DFT) calculations are performed to understand the reasons for the increased loading of NKMOF-2-BF₄, as well as its adsorption selectivity. We first optimize the structures of empty NKMOF-2-Cl and NKMOF-2-BF₄ without guest molecules. By exerting additional isotropic stress, we remove the pulay stress artifacts and obtain the optimal geometry of empty NKMOF-2-Cl and NKMOF-2-Cl and NKMOF-2-BF₄ (see SI for details). The resulted lattice parameters are listed in Table S8, in comparison with the experimental data. Excellent agreement between experiment and calculation is achieved, with deviations smaller than 3.1% for NKMOF-2-Cl and 1.8% for NKMOF-2-BF₄, validating our calculation methods.

To further verified that we did not under sample NKMOF-2-Cl, we transfer the CO₂ geometries of all four sites in NKMOF-2-BF₄ into the NKMOF-2-Cl frame, fixing their relative orientations for the Cu-O skeleton. Then we reoptimize and compute the resulted adsorption energies, and compare them with their counterparts in NKMOF-2-BF₄. The results are shown in Table S9, only site I remains low energy in NKMOF-2-Cl, while all other three sites become much less stable. Therefore, NKMOF-2-BF₄ does possess much more low-energy sites compare to NKMOF-2-Cl, validating our conclusion.

Starting from the optimal structure, we insert CO_2 molecule randomly into the **NKMOF-2-Cl** and **NKMOF-2-BF**₄, keeping the distance between the CO_2 and the framework atoms larger than 2.5Å. We sample 20 different initial geometries for CO_2 in **NKMOF-2-Cl** and **NKMOF-2-BF**₄, respectively. After the guest molecule is

inserted, we fix the lattice parameters and only optimize the atom positions. Meanwhile,

the energy of a single CO_2 is computed using an empty box with the same dimension

as the optimized NKMOF-2.

The interaction energy between CO_2 , anion (BF₄⁻ or Cl⁻) and frame walls can be decomposed using many-body decomposition:

$$\Delta E_{adsorption} = \Delta E_{deform}^{NKMOF-2} + \Delta E_{deform}^{CO_2} + \Delta E_{binding}^{CO_2 + Anion} + \Delta E_{binding}^{CO_2 + Frame wall} + \Delta E$$

where ΔE_{deform}^{AF} is the deformation energy of the empty **NKMOF-2** before and after adsorption, $\Delta E_{deform}^{CO_2}$ is the deformation energy of CO₂ before and after adsorption, $\Delta E_{binding}^{CO_2 + Anion}$ and $\Delta E_{binding}^{CO_2 + Frame wall}$ are the binding energy of CO₂ and anions and CO₂ and the frame wall, $\Delta E_{3-body interactions}^{CO_2 + binding}$ is the 3-body interaction. The energy decomposition results are shown in **Table S5**.

Complex	NKMOF-2-BF ₄	
Formula	$C_{18}H_{12}BCl_{2}Cu_{4}F_{4}N_{6}O_{6} \\$	
Formula weight	820.21	
Crystal system	monoclinic	
Space group	Cc	
a (Å)	13.2703(4)	
b (Å)	25.7082(7)	
c (Å)	9.7839(9)	
β (°)	92.398(6)	
$V(\text{\AA})^3$	3334.9(3)	
Z	4	
$D_c (g/cm^3)$	1.634	
$R_{ m int}$	5.96%	
$R_1 \left[I > 2\sigma(I) \right]$	6.97%	
$wR_2 [I > 2\sigma(I)]$	18.46%	
GOOF	0.978	
CCDC	1982349	

 Table S1 Crystal data and refinement summary

Fig. S1 Crystal Photographs of NKMOF-2-Cl (left) and NKMOF-2-BF₄ (right).

Table S2 Use ion chromatography to determine the content of F and Cl in NKMOF-

2-BF ₄ .			
Sample	F content (wt %)	Cl content (wt %)	
As calculated	9.27	8.65	
As synthesized	7.83	8.75	

Table S3 Use ion chromatography to determine the content of Cl in NKMOF-2-Cl.

Sample	Cl content (wt %)
As calculated	13.83
As synthesized	11.87

Table S4. Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) for

Sample	Cu content (wt %)	B content (wt %)
As-synthesized	32.6%	1.10%
Calculated	31.0%	1.21%

NKMOF-2-BF₄.

Fig. S2 The powder X-ray diffraction patterns for NKMOF-2-Cl and NKMOF-2-BF₄.

Fig. S3. PXRD patterns of NKMOF-2-Cl (left) and NKMOF-2-BF₄ (right) assynthesized and soaked in water for 1 day.

Fig. S4 CO₂ adsorption of NKMOF-2-Cl (left) and NKMOF-2-BF₄ (right) at 298K.

As-synthesized (royal blue), soaking in water for 1day (dark cyan).

Fig. S5 TGA curves for NKMOF-2-Cl and NKMOF-2-BF₄.

Fig. S6 Pore size distribution calculated based on CO₂ adsorption isotherms at 195 K

for NKMOF-2-Cl (a) and NKMOF-2-BF₄ (b).

Table S5 The energy decomposition of the interactions between the CO_2 , anion (BF₄⁻ or Cl⁻), and frame walls, where AF represents Anion + Frame wall, C is CO_2 , and FC

		NKMOF-2-BF ₄	NKMOF-2-Cl	Difference
Adsorption Energy		-59.7	-50.3	-9.4
Defermedences	AF	-1.2	2.8	-4.0
Deformed energy	С	1.1	0.8	0.3
Binding energy	AC	11.6	16.8	-5.2
	FC	-74.0	-60.5	-13.5
	AF*	220.4	241.2	-20.8
3-body interactions		2.8	-10.2	13.0

represents Frame wall + CO₂. (Unit in kJ/mol)

Note: The AF binding energies are positive due to the arbitrary definitions of charged reference states, thus the value itself has no realistic physical meanings and we should only focus on the changes due to the influence of different anions.

Fig. S7 Single-component adsorption isotherm at different temperatures for NKMOF-2. (a) C_2H_2 adsorption for NKMOF-2-BF₄; (b) CO_2 adsorption for NKMOF-2-BF₄; (c) C_2H_2 adsorption isotherms for NKMOF-2-Cl; (d) CO_2 adsorption isotherms for NKMOF-2-Cl.

Fig. S8 The virial fitting of CO₂ sorption data for NKMOF-2-Cl (top) and NKMOF-

 $2-BF_4$ (bottom).

Fig. S9 The virial fitting of C_2H_2 sorption data for NKMOF-2-Cl (top) and NKMOF-

2-BF₄ (bottom).

Fig. S10 The primary adsorption sites in NKMOF-2-Cl for (a) CO_2 and (b) C_2H_2 .

Fig. S11 The normalized CO₂ adsorption isotherms for NKMOF-2-Cl and NKMOF-

2-BF₄ at 273 K.

Fig. S12 The linear part of the adsorption profile of CO_2 for NKMOF-2-Cl (a) and NKMOF-2-BF₄ (b) at 298 K

Fig. S13 The primary adsorption sites in NKMOF-2-BF₄ for C_2H_2 .

Parameter	NKMOF-2-Cl	NKMOF-2-BF ₄
$q_{A,sat} \ (mmol \ g^{-1})$	0.75041	1.51733
$b_{\rm A}$ (kPa ⁻¹)	0.15996	0.14099
n _A	0.91138	0.92964
$q_{B,sat} \ (mmol \ g^{-1})$	1.74498	1.52408
$b_{\rm B}({\rm kPa^{-1}})$	0.01132	0.01449
n _B	0.82134	0.85267
R ²	0.9999947	0.999995

Table S6 The fitted parameters for the DSLF equation for the CO_2 adsorption isothermsfor NKMOF-2-Cl and NKMOF-2-BF4 at 298 K.

Parameter	NKMOF-2-Cl	NKMOF-2-BF ₄
$q_{A,sat} \text{ (mmol } g^{-1}\text{)}$	1.14857	1.53393
$b_A(kPa^{-1})$	0.47049	1.64895
n _A	0.76221	0.93486
$q_{B,sat} \ (mmol \ g^{-1})$	5.39573	6.09
$b_{\rm B}({\rm kPa^{-1}})$	0.00665	0.00507
n _B	0.62382	0.67927
\mathbb{R}^2	0.999983	0.999998

Table S7 The fitted parameters for the DSLF equation for the C_2H_2 adsorptionisotherms for NKMOF-2-Cl and NKMOF-2-BF4 at 298 K.

Fig. S14 The schematic breakthrough tests device. (1. Mass flow controller 2. Valve 3. Mixed gas room 4. Colum 5. Mantle heater 6. Mass spectrum 7. 3-way valve 8. Vacuum pump 9. Anti-backfire valve)

Fig. S15 The breakthrough curves of C_2H_2/CO_2 (v/v =2/1) with He as carrier gas for

NKMOF-2-Cl at 273 K, 288 K, 298 K and 308 K.

Fig. S16 The breakthrough curves of C_2H_2/CO_2 (v/v =2/1) with He as carrier gas for NKMOF-2-BF₄ at 273 K, 288 K, 298 K and 308 K.

Fig. S17 The cyclic breakthrough curves of NKMOF-2-Cl in a fixed bed under the flow (10 cm³/min) of $C_2H_2/CO_2/He$ (10/10/80, v/v/v).

Fig. S18 The breakthrough desorption curves for NKMOF-2-Cl (a) and NKMOF-2-BF₄ (b)

	DFT Results		Experimental Results	
	NKMOF-2-Cl	NKMOF-2-BF ₄	NKMOF-2-Cl	NKMOF-2-BF ₄
a(Å)	13.19	13.38	13.1098(3)	13.2703(4)
$b(\text{\AA})$	26.23	26.16	25.6755(4)	25.7082(7)
$c(\text{\AA})$	10.07	9.86	9.7704(3)	9.7839(9)
β(°)	94.03	92.07	95.186(3)	92.398(6)
$V(Å^3)$	3476.34	3448.78	3275.26(14)	3334.9(3)

Table S8 The lattice parameters of NKMOF-2-Cl and NKMOF-2-BF₄ from both

Table S9 The adsorption energies for CO_2 of the four primary adsorption sites in

NKMOF-2-BF₄ and NKMOF-2-Cl.

Adsorption Site	Adsorption energy (kJ/mol)		
	NKMOF-2-BF ₄	NKMOF-2-Cl	
Ι	-60.7	-60.3	
II	-61.1	-50.9	
III	-60.4	-52.4	
IV	-60.3	-50.9	

Fig. S19 The energy changing with increasing pulay stress.

Supplementary References

- 1. R. T. Yang, Gas separation by adsorption processes, Butterworth-Heinemann, 2013.
- 2. S. Lee, J. H. Lee and J. Kim, Korean J. Chem. Eng., 2018, 35, 214-221.
- H. Zeng, M. Xie, T. Wang, R.-J. Wei, X.-J. Xie, Y. Zhao, W. Lu and D. Li, *Nature*, 2021, 595, 542-548
- 4. G. Kresse and J. Hafner, Phys. Rev. B., 1993, 47, 558-561.
- 5. G. Kresse and J. Hafner, Phys. Rev. B., 1994, 49, 14251-14269.
- 6. G. Kresse and J. Furthmüller, Phys. Rev. B., 1996, 54, 11169-11186.
- 7. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 8. J. Klimeš, D. R. Bowler and A. Michaelides, J. Phys.: Condens. Matter, 2009, 22, 022201.
- 9. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, *Phys. Rev. B*, 1998, **57**, 1505-1509.