Supplementary Information

Chain aggregation dictates bimolecular charge recombination and fill factor of all-polymer blend solar cells

Ren Hagio, Hiroaki Benten,^{*} Yunju Na, Zhiyuan Liang, Naoki Oyaizu, Junya Suzuki, Shota Kubota, Min-Cherl Jung,¹ Hirotaka Kojima,² and Masakazu Nakamura

Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama-cho, Ikoma, Nara 630-0192, Japan.

¹ Present address: Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8577, Japan.

² Present address: National Institute of Technology, Maizuru College, Kyoto 625-8511, Japan.

1. J–V Characteristics of the thin- and thick-film devices

Figure S1. *J–V* characteristics of the thin-film (~100 nm, black lines) and thick-film (~300 nm, red lines) devices under AM 1.5G (100 mW cm⁻²) illumination (solid lines) and in the dark (broken lines): (a) P3HT:PCBM (103 and 350 nm), (b) PBDB-T:F-N2200 (94 and 313 nm), (c) PBDB-T:N2200 (117 and 297 nm), (d) PTB7-Th:F-N2200 (106 and 349 nm), and (e) PTB7-Th:N2200 (86 and 301 nm).

2. Photocurrent-density (J_{ph}) characteristics of the PBDB-T:N2200 device

Figure S2. (a) Photocurrent density (J_{ph}) as a function of effective applied voltage (V_0-V) under a 100 mW cm⁻² illumination for the PBDB-T:N2200 devices consisting of an active layer with a thickness of 105–297 nm. (b) Illumination light intensity dependence of J_{ph} versus V_0-V for a PBDB-T:N2200 device consisting of a 297-nm-thick active layer. (c) Illumination light intensity dependence of J_{ph} acquired from Figure S2(b) at $V_0-V = 0.2$ V (closed circles) and $V_0-V = 2.2$ V (open circles). The slope (*S*) determined from the linear fit (solid lines) to the experimental data is shown in the figure.

3. J–V characteristics of the hole- and electron-only devices

Figure S3. Dark *J–V* characteristics of the (a)–(e) hole-only and (f)–(j) electron-only devices based on (a)(f) P3HT:PCBM, (b)(g) PBDB-T:F-N2200, (c)(h) PBDB-T:N2200, (d)(i) PTB7-Th:F-N2200, and (e)(j) PTB7-Th:N2200 blend films. The solid and dashed lines represent the slopes of 2 and 1, respectively. The thickness of the blend film is indicated in each graph.

4. Electrical impedance spectroscopy results

Figure S4. Impedance spectra at different illumination intensities (open-circuit conditions) for (a)(f) P3HT:PCBM, (b)(g) PBDB-T:F-N2200, (c)(h) PBDB-T:N2200, (d)(i) PTB7-Th:F-N2200, and (e)(j) PTB7-Th:N2200. (a)–(e) Complete response. (f)–(j) Detailed response under high-illumination conditions.

5. Bimolecular recombination coefficient— k_{rec}

Figure S5. Bimolecular recombination coefficient (k_{rec}) as a function of the charge-carrier density (*n*) obtained for the devices using **Equation** (10) in the main text. Different symbols represent the results of different devices as indicated by the legends in the graph.

6. Light intensity dependence of Voc

Figure S6 shows V_{OC} as a function of light intensity at 294 K for the devices. The dashed lines represent best fits to the data (symbols) for a natural logarithmic dependence of V_{OC} on light intensity with a slope of $S = nk_{\rm B}T/e$, where *e* is the elementary charge, $k_{\rm B}$ is Boltzmann constant, *T* is temperature in Kelvin. The *n* value obtained from the slope for each device was n = 1.24 (P3HT:PCBM), 1.17 (PBDB-T:F-N2200), 1.07 (PBDB-T:N2200), 1.38 (PTB7-Th:F-N2200), and 1.18 (PTB7-Th:N2200).

Figure S6. Open-circuit voltage (symbols) as a function of incident light intensity; (a) P3HT:PCBM, (b) PBDB-T:F-N2200, (c) PBDB-T:N2200, (d) PTB7-Th:F-N2200, and (e) PTB7-Th:N2200. The dashed lines denote linear fits to the experimental data.

7. Grazing-incidence wide-angle X-ray scattering (GWAXS) results for the P3HT neat and P3HT:PCBM blend films

Figure S7. 2D GIWAXS patterns of the (a) P3HT neat and (b) P3HT:PCBM blend films. 1D profiles in the (c) in-plane and (d) out-of-plane directions, obtained from the 2D patterns of the P3HT neat (red lines) and P3HT:PCBM blend (black lines) films.

8. GIWAXS results for the neat films of polymer acceptors

Figure S8. 2D GIWAXS patterns of the (a) F-N2200 and (b) N2200 neat films spin-coated from the chlorobenzene solution. 1D profiles in the (c) in-plane and (d) out-of-plane directions, obtained from the F-N2200 (black lines) and N2200 (red lines) 2D patterns.

Figure S9. 2D GIWAXS patterns of the (a) F-N2200 and (b) N2200 neat films spin-coated from the chlorobenzene solution containing 0.5 wt% of DIO. 1D profiles in the (c) in-plane and (d) out-of-plane directions, obtained from the F-N2200 (black lines) and N2200 (red lines) 2D patterns.

9. Reconstruction of 1D profiles of the blend film

Figure S10. The black circles show the 1D profiles for the in-plane lamellar stacking and outof-plane π - π stacking obtained from the 2D patterns of the donor:acceptor blend films: (a) PTB7-Th:F-N2200, (b) PTB7-Th:N2200, (c) PBDB-T:F-N2200, and (d) PBDB-T:N2200. The green lines represent the superposition of the profiles obtained from the individual polymer donor (red lines) and acceptor (blue lines) neat films.

		In-plane π - π stacking				
	Index	$q_{\rm xy} ({\rm nm}^{-1})$	d (nm)	FWHM (nm ⁻¹)	L _c (nm)	Ν
РЗНТ	(010)	16.56	0.38	1.200	1.200 4.71 12.	
P3HT:PCBM	(010)	16.52	0.38	1.206	4.69	12.3
		Out-of-plane lamellar stacking				
	Index	$q_{\rm z} ({\rm nm}^{-1})$	<i>d</i> (nm)	FWHM (nm ⁻¹)	$L_{\rm c}$ (nm)	N
_	Index (100)	$q_{z} (nm^{-1})$ 4.00	<i>d</i> (nm) 1.57	FWHM (nm ⁻¹) 0.619	<i>L</i> _c (nm) 9.13	N 5.8
РЗНТ	Index (100) (200)	$q_{z} (nm^{-1})$ 4.00 7.88	<i>d</i> (nm) 1.57	FWHM (nm ⁻¹) 0.619	<i>L</i> _c (nm) 9.13	N 5.8
РЗНТ	Index (100) (200) (300)	$ q_{z} (nm^{-1}) 4.00 7.88 11.76 $	<i>d</i> (nm) 1.57 —	FWHM (nm ⁻¹) 0.619 	<i>L</i> _c (nm) 9.13	N 5.8
РЗНТ	Index (100) (200) (300) (100)	qz (nm ⁻¹) 4.00 7.88 11.76 4.01	<i>d</i> (nm) 1.57 — 1.57	FWHM (nm ⁻¹) 0.619 0.604	<i>L</i> _c (nm) 9.13 — 9.37	N 5.8 6.0

(300)

11.76

Table S1. In-plane and out-of-plane GIWAXS peak parameters obtained for the P3HT neat andP3HT:PCBM blend films.

		In-plane lamellar stacking				
Polymer	Index	$q_{\rm xy} ({\rm nm}^{-1})$	d (nm)	FWHM (nm ⁻¹)	L _c (nm)	Ν
PBDB-T	(100)	2.97	2.12	0.352	16.07	7.6
PTB7-Th	(100)	2.68	2.35	0.947	5.97	2.5
F-N2200 w/o ^a	(100)	2.44	2.57	0.228	24.82	9.7
F-N2200 w ^b	(100)	2.46	2.56	0.348	16.26	6.4
N2200 w/o ^a	(100)	2.48	2.53	0.209	27.01	10.7
N2200 w ^b	(100)	2.51	2.51	0.333	16.99	6.8
		Out-of-plane π - π stacking				
Polymer	Index	$q_{\rm z} ({\rm nm}^{-1})$	d (nm)) FWHM (nm ⁻¹) L_c (nm)		Ν
PBDB-T	(010)	17.32	0.36	2.439 2.32		6.4
PTB7-Th	(010)	16.19	0.39	3.782	1.50	3.9

0.38

0.38

0.39

0.39

1.761

1.934

1.481

1.917

3.21

2.92

3.82

2.95

8.5

7.7

9.8

7.6

Table S2. In-plane and out-of-plane GIWAXS peak parameters obtained for the polymer donor and acceptor neat films.

^a w/o: film was spin-coated from the chlorobenzene solution.

(010)

(010)

(010)

(010)

F-N2200 w/oa

F-N2200 w^b

N2200 w/o^a

N2200 w^b

^b w: film was spin-coated from the chlorobenzene solution containing 0.5 wt% of DIO.

16.57

16.62

16.09

16.14

Blend	Index	$q_{\rm xy} ({\rm nm}^{-1})$	d (nm)	$L_{\rm c}$ (nm)	Ν
PTB7-Th : F-N2200	Donor (100)	2.71 [2.68]	2.32 [2.35]	8.57 [5.97]	3.7 [2.5]
	Acceptor (100)	2.43 [2.44]	2.59 [2.57]	23.7 [24.8]	9.2 [9.7]
PTB7-Th : N2200	Donor (100)	2.83 [2.68]	2.22 [2.35]	8.23 [5.97]	3.7 [2.5]
	Acceptor (100)	2.49 [2.48]	2.52 [2.53]	29.4 [27.0]	11.7 [10.7]
	Acceptor (001)	4.62 [4.58]	1.36 [1.37]	15.2 [15.9]	11.1 [11.6]
PBDB-T : F-N2200	Donor (100)	2.94 [2.97]	2.14 [2.12]	11.4 [16.1]	5.3 [7.6]
	Donor (001)	6.56 [6.54]	0.96 [0.96]	8.29 [8.75]	8.7 [9.1]
	Acceptor (100)	2.44 [2.46]	2.58 [2.56]	17.8 [16.3]	6.9 [6.4]
PBDB-T : N2200	Donor (100)	2.96 [2.97]	2.12 [2.12]	14.6 [16.1]	6.9 [7.6]
	Donor (001)	6.55 [6.54]	0.96 [0.96]	7.94 [8.75]	8.3 [9.1]
	Acceptor (100)	2.50 [2.51]	2.51 [2.51]	18.1 [17.0]	7.2 [6.8]
	Acceptor (001)	4.60 [4.59]	1.37 [1.37]	14.6 [18.8]	10.7 [13.7]

Table S3. In-plane GIWAXS peak parameters calculated for the blend films and the constituent donor and acceptor neat films. The values for the neat films are shown in square brackets.