Supplementary Information

Alkali Metal-Mediated Interfacial Charge Redistribution Toward Near-Optimal Water Oxidation

Ungsoo Kim,^{‡a} Sangjin Lee,^{‡b} Nam Khen Oh,^{‡a} Jihyung Seo,^a Ji Hoo Cha,^a Junghyun Lee,^a Seong-hun Lee,^c Tae Joo Shin,^{cd} Jeong Min Baik,^{*ef} Young-Kyu Han,^{*b} and Hyesung Park^{*ad}

^aDepartment of Materials Science and Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea ^bDepartment of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

^cUNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

^dGraduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

^eSchool of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

^fKIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

*Corresponding authors

E-mail address: hspark@unist.ac.kr (H. Park), ykenergy@dongguk.edu (Y.-K. Han) jbaik97@skku.edu (J. M. Baik)

[‡]These authors contributed equally to this work.

Fig. S1 EELS spectrum and corresponding chemical map of Mo-M and O-K edges for LSC/LMO.

Fig. S2 OER polarization curves of LSC/LMO with different weight ratios.

Fig. S3 Nyquist plots of LSC/LMO for OER with various weight ratios. Inset: Equivalent electrical circuit model used for fitting the Nyquist complex-plane impedance plot.

Fig. S4 Cyclic voltammetry (CV) curve of various weight ratios of LSC/LMO. Each CV curve in the double-layer capacitance region is measured at scan rates from 20 to 160 mV s⁻¹ with a 20 mV s⁻¹ interval.

Fig. S5 (a) Double-layer capacitance values (C_{dl}) and (b) ECSA values of LSC/LMO with different weight ratios.

Fig. S6 High-resolution XPS spectra of Co 2p and Mo 3d of LSC/LMO after the chronoamperometric stability test at 100 mA cm⁻² for 200 h.

Fig. S7 XRD spectrum of LSC/LMO after the chronoamperometric stability test at 100 mA $\rm cm^{-2}$ for 200 h.

Fig. S8 TEM and HR-TEM images of LSC/LMO after the chronoamperometric stability test at 100 mA cm⁻² for 200 h. Red and yellow boxes correspond to the domain of LSC and Mo nanograin, respectively.

Fig. S9 Polarization curves for the overall water-splitting. The inset image shows the two electrodes system for the overall water-splitting.

Fig. S10 Rietveld XRD refinement patterns of LSC/LMO, LSC, and LMO.

Fig. S11 UV–Vis–NIR spectra of LSC/LMO, LMO, and 2H-MoSe₂ indicating metallic features of LSC/LMO and LMO.

Fig. S12 TGA profile of LSC/LMO without and with exposure wet-air environment.

Fig. S13 Pore size distribution of LSC/LMO calculated from N_2 adsorption isotherms.

Fig. S14 High-resolution Co 2p XPS core-level spectrum for LSC.

Fig. S15 High-resolution XPS spectrum of Mo 3d peak for LMO.

Fig. S16 Non-phase shifted Fourier transform (FT) EXAFS spectra of (a) Co K-edge of LSC/LMO, LSC, and Co foil and (b) Mo K-edge of LSC/LMO, LMO, and Mo foil.

Fig. S17 High-resolution O 1s XPS core-level spectra for (a) LSC and (b) LSC/LMO.

Fig. S18 Free energy diagrams for (a) LSC and (b) LSC/LMO in adsorbate evolution mechanism.

Element	Weight %	Atomic %
La	35.54	21.60
Sr	24.57	23.68
Со	35.46	50.81
Мо	4.43	3.91
Se	0.0	0.0
Total	100	100

 Table S1. Elemental composition of LSC/LMO determine by ICP-OES.

Table S2. OER overpotential at 10 mA cm $^{-2}$ of LSC/LMO with different weight ratios obtainedfrom the OER polarization curve in Fig. S2.

Weight ratio	5:4	6:3	7:2	8:1	9:0	0:9
Overpotential at 10 mA cm ⁻² (V)	1.49	1.48	1.47	1.45	1.60	2.39

Table S3. Charge transfer resistance (R_{ct}) of LSC/LMO with various weight ratios obtained from the Nyquist plot analysis in Fig. S3.

Weight ratio	5:4	6:3	7:2	8:1
$R_{\rm ct}$ (Ω cm ²)	48.57	11.62	10.89	6.50

Catalyst	Component	Proportion (wt%)	Space group	a (Å)	b (Å)	c (Å)
	LSC	78.80	Pm3m	3.837	3.837	3.837
LSC/LMO	Li ₂ MoO ₄	27.20	R3	14.337	14.337	9.589
LSC	LSC	100	Pm3m	3.837	3.837	3.837
	Li ₂ MoO ₄	79.23	R3	14.337	14.337	9.589
LMO	MoO ₃	20.77	Pbnm	3.962	13.858	3.697

Table S4. Rietveld refined lattice parameters of LSC/LMO, LSC, and LMO.

Table S5. Summary of the quantification of Co^{3+}/Co^{2+} ratios in LSC and LSC/LMO obtainedfrom the XPS analysis in Fig. 3g and Fig. S14.

	LSC (atomic %)	LSC/LMO (atomic %)
Co 2p _{3/2} , Co ³⁺	61.1	91.1
Co 2p _{3/2} , Co ²⁺	38.9	8.9
C0 ³⁺ /C0 ²⁺	ca. 1.6	ca. 10.3

	LMO (atomic %)	LSC/LMO (atomic %)
Mo ⁴⁺ 3d _{5/2} (1T)	10.5	2.4
Mo ⁴⁺ 3d _{5/2} (2H)	9.3	
Mo ⁴⁺ 3d _{3/2} (1T)	4.9	
Mo ⁴⁺ 3d _{3/2} (2H)	0.7	
Mo ⁵⁺ 3d _{5/2}	14.9	48.6
Mo ⁵⁺ 3d _{3/2}	4.6	35.9
$Mo^{6+} 3d_{5/2}$	36.6	11.1
$Mo^{6+} 3d_{3/2}$	18.5	2.0
Total	100	100

Table S6. Summary of the quantification of Mo⁴⁺, Mo⁵⁺, and Mo⁶⁺ contents in LMO and LSC/LMO obtained from the XPS analysis in Fig. 3h and Fig. S15.

Table S7. Summary of the quantification of lattice oxygen (AO), highly oxidative oxygen (BO), surface-active oxygen (CO), and adsorbed water (DO) in LSC and LSC/LMO obtained from the XPS analysis in Fig. S17.

	LSC (atomic %)	LSC/LMO (atomic %)
AO	10.1	10.9
ВО	50.5	24.9
CO	28.3	48.9
DO	11.1	15.3
CO/AO	ca. 2.8	ca. 4.5

Catalyst	$R_{ m s}$ (Ω cm ²)
LSC/LMO	1.91
IrO ₂	2.82
LSC	4.58
LMO	1.95

Table S8. Electrolyte resistance of tested catalysts obtained from the Nyquist plot in Fig. 2c.

Note S1.

OER simulations

The Fig. 4c and Fig. S18 show a comparison between lattice oxygen participation mechanism (LOM) and adsorbate evolution mechanism (AEM) for OER free energies in the LSC and LSC/LMO systems. The LOM proceeds with elementary reactions below:

$$\begin{aligned} \mathrm{OH}^{*} &\to \left(\mathrm{V}_{\mathrm{O}} + \mathrm{OO}\right)^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \\ &\left(\mathrm{V}_{\mathrm{O}} + \mathrm{OO}\right)^{*} + \mathrm{H}_{2}\mathrm{O}_{(l)} \to \left(\mathrm{V}_{\mathrm{O}} + \mathrm{OH}\right)^{*} + \mathrm{O}_{2(g)} + \mathrm{H}^{+} + \mathrm{e}^{-} \\ &\left(\mathrm{V}_{\mathrm{O}} + \mathrm{OH}\right)^{*} + \mathrm{H}_{2}\mathrm{O}_{(l)} \to \left(\mathrm{H}_{\mathrm{O}} + \mathrm{OH}\right)^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \\ &\left(\mathrm{H}_{\mathrm{O}} + \mathrm{OH}\right)^{*} \to \mathrm{OH}^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \end{aligned}$$

, where OH, V_0 , OO, and H_0 indicate OH adsorbates, oxygen vacancies, OO adsorbates, and hydrogen atoms adsorbed on lattice oxygen, respectively. * represents that the adsorbates are bound to the LSC (001) surface.

The AEM proceeds with elementary reactions below:

* $H_2O_{(l)} \rightarrow OH^* + H^+ + e^ OH^* \rightarrow O^* + H^+ + e^ O^* + H_2O_{(l)} \rightarrow OOH^* + H^+ + e^ OOH^* \rightarrow * + O_{2(g)} + H^+ + e^-$

, where OOH indicates OOH adsorbates.