Supporting Information

Screening interface passivation materials intelligently through machine learning for highly efficient perovskite solar cells

Wu Liu,^{*a,b*} Yao Lu,^{*a,b*} Dong Wei,^{*c,**} Xiaomin Huo, ^{*a,b*} Xiaofeng Huang, ^{*a,b*} Yaoyao Li, ^{*a,b*} Juan Meng, ^{*a,b*} Suling Zhao, ^{*a,b*} Bo Qiao, ^{*a,b*} Zhiqin Liang, ^{*a,b*} Zheng Xu, ^{*a,b,**} Dandan Song ^{*a,b,**}

^a Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China

^b Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China

^c College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.

E-mail: <u>ddsong@bjtu.edu.cn (</u>Dandan Song); <u>zhengxu@bjtu.edu.cn (</u>Zheng Xu);

<u>q397983012@126.com (</u>Dong Wei)

1. Experimental

Materials Preparation: PbI₂ (purity > 99.9985%), MAI (purity > 99.995%), FAI (purity > 99.995%), MABr (purity > 99.995%), and spiro-OMeTAD (purity > 99.5%) were purchased from Liaoning Youxuan Corp., Diethyl ether (DEE), chlorobenzene (CB), and lithium bis (trifluoromethylsulfonyl) imide salt (Li-TFSI) were purchased from Sigma-Aldrich. Dimethylformamide (DMF, purity > 99.8%) and dimethyl sulfoxide (DMSO, purity > 99.7%) were purchased from Aladdin reagent. All Materials are used as-received.

Perovskite and Spiro-OMeTAD Solution: Perovskite precursor solution of FA_{0.6}MA_{0.4}PbI₃ was composed by dissolving FAI (0.6 mmol), MABr (0.07 mmol), MAI (0.33 mmol), and PbI₂ (1.07 mmol) in 1 mL mixed solvent of DMF and DMSO (volume ratio of 4:1). The spiro-OMeTAD solution was composed of spiro-OMeTAD and Li-TFSI. The solutions mentioned above were stirred at 25 °C for 12 h and then filtered through a 0.45 µm syringe filter.

Fabrication of Solar Cells: The pre-cleaned FTO substrates were dried with nitrogen and treated with UV ozone for 10 min. The TiO₂ layer was prepared by the water bath deposition as the ETL. The perovskite precursor solution was spin-coated at 7000 rpm for 25 s on the FTO/TiO₂ substrates with diethyl ether (DEE) as the anti-solvent. After the spin coating, the perovskite films were annealed at 150 °C for 10 min and then cooled to room temperature. The films were cooled down to room temperature for the surface passivation treatment and treated with MAI or PEAI solution. The Spiro-OMeTAD solution was coated on perovskite films at 4000 rpm for 30 s. Finally, the devices were completed with a 70 nm thick gold counter electrode using thermal evaporation.

Extraction of parameters from J-V curves and SCLC measurement: Planar structured PSCs can be treated as a single heterojunction diode. The electric parameters of the PSCs, including the ideality factor of the diode (*m*), the series resistance (R_s), and the reverse saturation current (J_0) of the PSCs, can be calculated according to the diode equation.^[1,2]

$$-\frac{dV}{dJ} = \frac{mk_BT}{e} (J_{SC} - J)^{-1} + R_S$$
(1)

$$\ln (J_{SC} - J) = \frac{e}{mk_B T} (V + R_S \times J) + \ln (J_0)$$
 (2)

where *J* is the current density flow through the external load, *e* is the elementary charge, and K_B and *T* are the Boltzmann constant and the absolute temperature, respectively.

The trap state density N_{trap} can be determined from the trap-filled limit voltage (V_{TFL}) by Equation (3):

$$N_{\rm trap} = \frac{2\varepsilon_0 \varepsilon}{qL^2} V_{\rm TFL} \tag{3}$$

where q is the electron charge, N_{trap} is the trap state density, L is the thickness of the perovskite layer, ε is the relative dielectric constant for FA_{0.6}MA_{0.4}PbI₃, and ε_0 is the vacuum permittivity. As we can see, the only variable in the equation is V_{TFL} , which can be extracted from the *J*-*V* plots in the SCLC region.

2. DFT calculation

The structural optimization and electronic structure calculations were carried out by Cambridge Serial Total Energy Package^[3,4] (CASTEP) in *Materials studio*. The generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional was employed.^[5] Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm was used for the structural optimization of the model with the following optimization parameters: the calculation was expanded by using the ultrasoft pseudopotential with a cutoff energy of 435 eV, and the total energy was converged to 2×10^{-5} eV. The structural optimization was optimized until the force tolerance on each atom was smaller than $0.05 \text{eV}Å^{-1}$, the stress tolerance was smaller than 0.1 GPa, and the displacement tolerance was smaller than 0.002 Å. The Monkhorst-Pack grids with the actual spacing of 0.041 Å⁻¹ and SCF tolerance of $2 \times e^{-6}$ eV/atom were used in all DFT simulations.

 $FA_{0.6}MA_{0.4}PbI_3$ possesses a cubic structure, with the space group Pm-3m at room temperature. A $3 \times 3 \times 1$ supper cell and a 20 Å vacuum slab were employed to investigate the adsorption of different additives. All additives were placed on the supper cell surface to optimize to convergence.

A large number of studies have shown that high-performance PSCs often adopt the strategy of excessive PbI₂. At the same time, according to the results of previous DFT studies, the PbX₂ terminal on the 001 surfaces has the lowest energy among all types of surfaces.^[6] In the case of using PEAI as the interface modification material, PEAI adsorbs on the [PbI₄]²⁻ surface of the perovskite during interface passivation. Meanwhile, since the Pb-I bond is stronger than the interaction between PEA-I, we consider the weakest binding energy of the PEA-I bonds as the final binding energy value to compare different interface passivation materials. Therefore, we use the I-terminal as the surface state, and PEA⁺ is placed on the perovskite surface.^[7] Binding energies were calculated based on the surface relaxation approach, following

$$E_{binding\ energy} = E_{all} - E_{surface} - E_{additive}$$

Where $E_{\text{binding energy}}$ is the final binding energy between additives and perovskite surface, E_{all} is the total energy of the system after relaxation of additives adsorbed on perovskite surface, E_{surface} is the surface energy of the perovskite without additives, E_{additive} is the energy of the additive. The settings in the cases of using other organic salts are similar to these of PEAI.

3. Machine learning

Dataset Preparation: For dataset preparation, we mainly focus on utilizing interface materials at the perovskite/Spiro-OMeTAD HTL interface. The data of the ML model were collected from the published literature, including various publishing groups such as Wiley, Elsevier, RSC, Nature, and Science. To ensure the uniformity of data collection standards and to establish a high-quality dataset, we removed inorganic interface material to avoid its noise to organic functional groups. Only the reports within the last five years were kept to reflect the current development of interface engineering. In addition, devices with PCEs above 18% were selected to reduce data dispersion while ensuring the learning accuracy of the high-PCE mapping models. To minimize the effect of the standard device and clearly show the role of the interface material, we also use the control device performance (the control PCE) as the input feature. The ion ratios in the perovskite precursors were counted rather than those suggested in the films. The data points using the two-step film formation method also were washed away.

Feature Engineering: Several factors determine a material's or device's properties, also called features. Feature extraction follows three principles: highly correlated to the output, easy to obtain, and minimal in number. The SHAP value analysis and feature importance analysis from the algorithm model were used to reflect the influence of the feature of each sample, and the correlation analysis in statistical analysis was used to reflect the degree of linear correlation between the two variables. We ranked the initial more than 300 features through the SHAP value, feature importance, and correlation analysis. We screened the most critical 15 features from more than 300 features describing perovskite, interface material, and control device

performance. Therefore, we constructed a set of 15-dimensional features as the input of the photovoltaic parameter prediction model (Table 1), which reduces the overfitting problem caused by the high complexity of the model.

Machine learning settings: Rstudio was employed as the platform for machine learning. Linear regression (LR), neural network (NN), random forest (RF), and extreme gradient boosting (XGBoost) algorithms were used based on *glm*, *neuralnet*, *randomForest*, and *xgboost* functions, respectively. The performance of the algorithms was evaluated by the root mean square error (RMSE) and Pearson's coefficient (*r*-value) on the test set. Here,

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(X_i - Y_i)^2}{n}}$$
(4)

$$\boldsymbol{r} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$
(5)

 $X_i, Y_i, \overline{X}, \overline{Y}$, and *n* represent the *i*th value of the experimental dataset, the *i*th value of the predicted dataset, the mean value of the experimental dataset, the mean value of the predicted dataset, and the number of the dataset points, respectively. The test set accounted for 30% of the entire database and was mutually exclusive with the training set. We use 10-fold cross-validation to optimize the hyperparameters, dividing the train set into ten parts (90% data points for training and 10% for validation) and learning ten times. The model performing the lowest average RMSE on the validation sets was screened for testing on the test set and further use. In detail, the NN model had four hidden layers, which had 100, 50, 20, and 2 neurons, respectively; the tree number in the RF model was 5000. The max depth and the number of rounds in the XGBoost model were 10 and 25, respectively.

4. Supplementary results

Figure S1. Performance improvements of different passivation strategies based on more than 200 highly efficient *nip*-type PSCs. Here, the device performance is generally referred to as the values obtained in the reverse scan, except the scan direction is not clearly stated. The performance improvements were the differences between the modified and control devices. The interface approach refers to modifying the perovskite film before or after the film fabrication of the perovskite layer. In contrast, the bulk approach refers to adding additives into the perovskite precursor solution or during the film fabrication of the perovskite layer.

	Device	Control	Interface	Perovskite pr	tion		
ID	ID PCE device PCE		material	A site cation and ratio	A2X	P2X	- References' DOI
1	20.50	19.20	S	Cs _{0.1} FA _{0.9}	1:3	1.05:3	10.1038/s41467- 018-06709-w
2	20.50	19.20	Ν	Cs0.1FA0.9	1:3	1.05:3	10.1038/s41467- 018-06709-w
3	20.90	19.20	SN	Cs _{0.1} FA _{0.9}	1:3	1.05:3	10.1038/s41467- 018-06709-w
4	21.01	19.45	PEIm	Cs0.1016FA0.7813M A0.1172	0.965:3	1.018:3	<u>10.1039/D0TA05</u> <u>496H</u>
5	19.01	15.01	РЗНТ	MA	1.8:3	0.6:3	<u>10.1016/j.jpowso</u> <u>ur.2017.12.082</u>
6	18.61	15.01	PTAA	MA	1.8:3	0.6:3	<u>10.1016/j.jpowso</u> <u>ur.2017.12.082</u>
7	18.35	15.01	MEH-PPV	MA	1.8:3	0.6:3	<u>10.1016/j.jpowso</u> <u>ur.2017.12.082</u>
8	17.83	15.01	Poly-TPD	MA	1.8:3	0.6:3	<u>10.1016/j.jpowso</u> <u>ur.2017.12.082</u>
9	17.66	15.01	PBDTTT- CT	MA	1.8:3	0.6:3	<u>10.1016/j.jpowso</u> <u>ur.2017.12.082</u>
10	19.57	17.48	MMI	MA	1:3	1:3	<u>10.1002/adma.20</u> <u>1800544</u>
11	19.20	15.70	Benzylamin e	FA	1:3	1:3	<u>10.1002/adma.20</u> <u>1603062</u>
12	18.10	16.10	PMMA	MA	1:3	1:3	<u>10.1021/acs.jpcc.</u> <u>6b12137</u>
13	18.87	18.08	TP	Cs0.0617FA0.7819M A0.1564	0.989:3	1.005:3	<u>10.1002/aenm.20</u> <u>1703143</u>
14	18.82	18.08	MTP	Cs _{0.0617} FA _{0.7819} M A _{0.1564}	0.989:3	1.005:3	<u>10.1002/aenm.20</u> <u>1703143</u>
15	19.17	18.08	ETP	Cs0.0617FA0.7819M A0.1564	0.989:3	1.005:3	<u>10.1002/aenm.20</u> <u>1703143</u>
16	19.44	18.08	BTP	Cs _{0.0617} FA _{0.7819} M A _{0.1564}	0.989:3	1.005:3	<u>10.1002/aenm.20</u> <u>1703143</u>
17	19.89	18.08	HTP	Cs _{0.0617} FA _{0.7819} M A _{0.1564}	0.989:3	1.005:3	<u>10.1002/aenm.20</u> <u>1703143</u>
18	19.20	18.08	DTP	Cs _{0.0617} FA _{0.7819} M A _{0.1564}	0.989:3	1.005:3	<u>10.1002/aenm.20</u> <u>1703143</u>
19	20.50	18.90	FABr	FA0.8462MA0.1538	0.975:3	1.013:3	<u>10.1039/C6EE03</u> <u>182J</u>

 Table S1. Reports on the interface modification at the perovskite/Spiro-OMeTAD interface of

 the PSCs

20	18.51	17.02	PEAI	Cs _{0.0617} FA _{0.7819} M	0.989:3	1.005:3	<u>10.1002/adfm.20</u>
				A0.1564			1700925
21	22.00	20.70	C ₄ Br	FA0.6965MA0.3035	1.14:3	0.93:3	10.1039/C9EE00 751B
22	22.40	20.70	C ₆ Br	FA0.6965MA0.3035	1.14:3	0.93:3	<u>10.1039/C9EE00</u> <u>751B</u>
23	22.10	20.70	C ₈ Br	FA0.6965MA0.3035	1.14:3	0.93:3	<u>10.1039/C9EE00</u> <u>751B</u>
24	20.28	18.35	2-MP	MA	0.968:3	1.016:3	10.1002/aenm.20 1803573
25	18.74	18.35	PTT	MA	0.968:3	1.016:3	<u>10.1002/aenm.20</u> <u>1803573</u>
26	19.02	18.35	Ру	MA	0.968:3	1.016:3	<u>10.1002/aenm.20</u> <u>1803573</u>
27	22.30	20.72	EAI	Cs0.07FA0.9MA0.03	0.98:3	1.01:3	10.1038/s41467- 019-10985-5
28	21.60	20.72	IAI	Cs0.07FA0.9MA0.03	0.98:3	1.01:3	10.1038/s41467- 019-10985-5
29	20.90	20.72	GuaI	Cs0.07FA0.9MA0.03	0.98:3	1.01:3	10.1038/s41467- 019-10985-5
30	20.54	19.22	FPEAI	Cs0.0617FA0.7819M A0.1564	0.964:3	1.018:3	<u>10.1002/aenm.20</u> <u>1802595</u>
31	19.20	16.40	tBP	FA0.85MA0.15	1:3	1:3	<u>10.1039/C9EE01</u> <u>773A</u>
32	19.43	18.83	BAI	Cs _{0.0477} FA _{0.8095} M A _{0.1428}	0.975:3	1.012:3	<u>10.1021/acsami.9</u> <u>b17930</u>
33	20.62	18.83	HAI	Cs _{0.0477} FA _{0.8095} M A _{0.1428}	0.975:3	1.012:3	<u>10.1021/acsami.9</u> <u>b17930</u>
34	21.19	19.52	EPC	FA0.7159MA0.2841	1.2:3	0.9:3	<u>10.1039/D0TA02</u> <u>222E</u>
35	20.50	20.45	TFDIB	Cs0.05FA0.855MA0.0 95	0.971:3	1:3	<u>10.1021/jacs.9b1</u> <u>3701</u>
36	19.60	18.50	HS-Ph-CN	Cs _{0.0514} FA _{0.7905} M A _{0.1581}	0.972:3	1.014:3	<u>10.1039/C8EE00</u> <u>754C</u>
37	20.00	19.00	HS-Ph-NO ₂	Cs _{0.0514} FA _{0.7905} M A _{0.1581}	0.972:3	1.014:3	<u>10.1039/C8EE00</u> <u>754C</u>
38	19.10	19.00	HS-Ph- SCH3	$Cs_{0.0514}FA_{0.7905}M$ A_0.1581	0.972:3	1.014:3	<u>10.1039/C8EE00</u> <u>754C</u>
39	19.40	19.00	HS-Ph- OCH ₃	Cs _{0.0514} FA _{0.7905} M A _{0.1581}	0.972:3	1.014:3	<u>10.1039/C8EE00</u> <u>754C</u>
40	20.62	17.43	PHI	Cs0.05FA0.7885MA0.	0.976:3	1.012:3	<u>10.1021/acsami.0</u> <u>c10448</u>
41	20.80	20.28	PMMA	Cs0.0636Rb0.0273FA0 .7692MA0.1399	1.014:3	0.993:3	10.1002/aenm.20 1801208

42	21.09	19.55	C1TPPPF6	Cs _{0.0367} Rb _{0.015} FA _{0.} 6977MA0.2506	1.201:3	0.9:3	<u>10.1002/eom2.12</u> 158
43	22.09	19.55	BrTPPPF ₆	Cs0.0367Rb0.015FA0. 6977MA0.2506	1.201:3	0.9:3	<u>10.1002/eom2.12</u> <u>158</u>
44	22.48	19.93	CHAI	FA	1.304:3	0.848:3	<u>10.1002/aenm.20</u> <u>2102236</u>
45	23.07	19.93	CHMAI	FA	1.304:3	0.848:3	<u>10.1002/aenm.20</u> <u>2102236</u>
46	21.70	20.10	(HAD)I ₂	Cs _{0.0502} FA _{0.8094} M A _{0.1405}	0.945:3	1.027:3	<u>10.1002/aenm.20</u> 2102973
47	22.60	20.10	(EDBE)I ₂	Cs _{0.0502} FA _{0.8094} M A _{0.1405}	0.945:3	1.027:3	<u>10.1002/aenm.20</u> 2102973
48	20.56	18.14	CDCA	Cs _{0.0625} FA _{0.7813} M A _{0.1563}	0.99:3	1.005:3	<u>10.1016/j.jpowso</u> <u>ur.2020.228502</u>
49	21.94	19.17	C8-BTBT	Cs0.05FA0.85MA0.1	0.981:3	1.009:3	<u>10.1021/acsenerg</u> <u>ylett.1c01898</u>
50	21.29	19.71	MTDAA	Cs0.0367Rb0.015FA0. 6977MA0.2506	1.201:3	0.9:3	<u>10.1021/acsenerg</u> <u>ylett.1c00794</u>
51	21.20	20.52	ADAHCl	Cs0.0601FA0.7991M A0.1408	1.015:3	0.993:3	<u>10.1002/aenm.20</u> <u>1803587</u>
52	20.46	19.24	Polystyrene	Cs0.0588FA0.7843M A0.1569	0.977:3	1.011:3	<u>10.1021/acsami.8</u> <u>b04776</u>
53	18.95	16.99	CTABr	MA	1:3	1:3	<u>10.1039/C9TA02</u> <u>631B</u>
54	20.28	19.62	CTABr	FA0.95MA0.05	1:3	1:3	<u>10.1039/C9TA02</u> <u>631B</u>
55	20.13	18.52	TCPBr	MA	1:3	1:3	<u>10.1039/C9TA12</u> <u>597C</u>
56	19.41	18.52	TCPI	MA	1:3	1:3	<u>10.1039/C9TA12</u> <u>597C</u>
57	20.40	16.80	PMMA	MA	1.001:3	0.999:3	<u>10.1002/admi.20</u> <u>1701256</u>
58	21.90	20.90	PTPD	Cs0.0564FA0.9MA0.0	1:3	1:3	<u>10.1002/adma.20</u> 1807435
59	21.60	19.30	Tetracene	Cs0.06FA0.7935MA0.	1.013:3	1.021:3	<u>10.1126/sciadv.aa</u> v2012
60	20.47	19.01	PABA	MA	1:3	1:3	<u>10.1002/admi.20</u> 1901584
61	20.93	19.32	ADA	Cs0.0497FA0.8077M A0.1425	1.006:3	0.997:3	<u>10.1002/aenm.20</u> 1800275
62	20.47	19.32	AD	Cs0.0497FA0.8077M A0.1425	1.006:3	0.997:3	<u>10.1002/aenm.20</u> 1800275
63	20.90	19.80	PVP	Cs _{0.04} FA _{0.8} MA _{0.16}	0.964:3	1.018:3	<u>10.1021/acsomeg</u> a.8b00555

64	21.11	19.61	B ₂ Cat ₂	Cs _{0.0465} FA _{0.8450} M A _{0.1085}	0.97:3	1.015:3	<u>10.1002/adma.20</u> 1805085
<i>.</i> -	01.50	10.40	01.1	Cs0.0378FA0.6280M	1 10 4 0	0.000.0	10.1021/acsenerg
65	21.53	19.48	OLA	A0.3342	1.194:3	0.903:3	ylett.0c00279
66	20.04	19 10	BMIMBF 4	Cs0.0491FA0.7953M	0.995.3	1 003.3	10.1016/j.orgel.2
00	20.01	19.10	Diminibi 4	A _{0.1556}	0.775.5	1.005.5	<u>020.105805</u>
67	19.17	18.26	POSS-NH ₂	FA0.8333MA0.1667	0.947:3	1.026:3	<u>10.1021/acsaem.</u> <u>9b00050</u>
68	18.38	18.26	POSS-SH	FA0.8333MA0.1667	0.947:3	1.026:3	<u>10.1021/acsaem.</u> <u>9b00050</u>
69	19.02	17.20	BEDCE	MA	1.005:3	0.997:3	<u>10.1039/C8TA09</u> <u>724K</u>
70	20.90	19.70	cesium acetate	Cs0.05FA0.8MA0.15	1:3	1:3	<u>10.1021/acsami.8</u> <u>b10616</u>
71	18.31	17.65	Cs-oleate	Cs _{0.0476} FA _{0.7905} M A _{0.1619}	1.033:3	0.984:3	<u>10.1021/acsami.9</u> <u>b08026</u>
72	18.97	17.92	TAI	FA0.9MA0.1	0.938:3	1.031:3	<u>10.1021/acsenerg</u> <u>ylett.9b00930</u>
73	19.89	18.61	ImI	MA	1:3	1:3	<u>10.1016/j.nanoen</u> .2018.05.035
74	19.10	17.20	P(VDF- TrFE)	Cs _{0.2} FA _{0.8}	1:3	1:3	<u>10.1246/c1.19069</u> <u>2</u>
75	18.83	17.51	PD-10- DTTE-7	MA	1:3	1:3	<u>10.1002/solr.201</u> <u>800232</u>
76	20.56	19.25	TFMBA	Cs _{0.0497} FA _{0.8077} M A _{0.1425}	0.985:3	1.008:3	<u>10.1016/j.cej.202</u> <u>0.126712</u>
77	23.25	21.09	DMIMPF ₆	Cs _{0.08} FA _{0.92}	1:3	1:3	<u>10.1002/anie.202</u> <u>010987</u>
78	20.16	17.94	PEACl	FA _{0.1} MA _{0.9}	1.286:3	0.857:3	<u>10.1021/acsaem.</u> <u>1c02210</u>
79	20.70	19.30	BAI	MA	1.026:3	0.987:3	<u>10.1039/D1RA02</u> <u>260A</u>
80	19.42	18.41	SDBS	MA	1:3	1:3	<u>10.1021/acsami.0</u> <u>c14732</u>
81	20.83	19.45	PyNa+	Cs0.0517FA0.8621M A0.0862	0.978:3	1.011:3	<u>10.1002/solr.202</u> 100416
82	22.66	20.61	OAI	Cs _{0.0636} Rb _{0.0273} FA ₀ .769MA _{0.14}	1.014:3	0.993:3	<u>10.1002/adfm.20</u> 2104251
83	23.38	20.61	OABr	Cs0.0636Rb0.0273FA0 .769MA0.14	1.014:3	0.993:3	<u>10.1002/adfm.20</u> 2104251
84	23.62	20.61	OACl	Cs0.064Rb0.0273FA0. 769MA0.14	1.014:3	0.993:3	<u>10.1002/adfm.20</u> 2104251
85	21.95	19.76	СВАН	FA	1.124:3	0.938:3	<u>10.1002/smll.202</u> 104100

86	24.33	22.67	[EMIM]Br	FA	0.959:3	1.021:3	<u>10.1002/aenm.20</u> 2103491
87	20.15	18.64	DMEDAI ₂	MA	1:3	1:3	<u>10.1021/acsami.9</u> <u>b17851</u>
88	21.37	19.36	Poly TPD	FA0.85MA0.15	1:3	1:3	<u>10.1002/adma.20</u> 2006087
89	17.49	14.16	Poly TPD	FA	1:3	1:3	<u>10.1002/adma.20</u> 2006087
90	22.16	20.62	FEAI	Cs0.04FA0.9201MA0. 0398	0.958:3	1.021:3	<u>10.1126/sciadv.aa</u> <u>w2543</u>
91	19.10	18.05	TPPO	Cs _{0.05} FA _{0.8} MA _{0.15}	1:3	1:3	<u>10.1002/adfm.20</u> <u>1910710</u>
92	19.13	18.05	TMPP	Cs0.05FA0.8MA0.15	1.:3	1:3	<u>10.1002/adfm.20</u> <u>1910710</u>
93	21.04	18.05	TPFP	Cs0.05FA0.8MA0.15	1:3	1:3	<u>10.1002/adfm.20</u> <u>1910710</u>
94	21.15	20.06	2-TEAI	Cs0.995FA0.9005	1.003:3	0.998:3	<u>10.1002/adma.20</u> 2007431
95	21.06	18.87	QA	MA	1:3	1:3	<u>10.1002/anie.202</u> 012095
96	18.20	17.50	BAI	Cs0.0514FA0.7905M A0.1581	0.972:3	1.014:3	<u>10.1021/acsaem.</u> <u>0c00553</u>
97	20.10	17.50	BAI.F4TCN Q	Cs _{0.0514} FA _{0.7905} M A _{0.1581}	0.972:3	1.014:3	<u>10.1021/acsaem.</u> <u>0c00553</u>
98	21.70	20.40	ТВРО	Cs _{0.0337} FA _{0.6595} M A0.3067	1.151:3	0.924:3	<u>10.1002/adma.20</u> <u>1907396</u>
99	21.20	20.40	ТРРО	Cs _{0.0337} FA _{0.6595} M A0.3067	1.151:3	0.924:3	<u>10.1002/adma.20</u> <u>1907396</u>
100	21.60	18.90	ODAI2	FA0.8333MA0.1667	0.947:3	1.026:3	<u>10.1016/j.nanoen</u> .2020.104892
101	20.31	19.22	HDADI	Cs0.0477FA0.8095M A0.1428	0.975:3	1.012:3	<u>10.1039/D0TA02</u> <u>437F</u>
102	20.05	18.03	AVAI	MA	1.095:3	0.952:3	<u>10.1021/acs.jpcle</u> <u>tt.0c02528</u>
103	22.25	20.10	HBAI.FAI	Cs0.05FA0.85MA0.1	0.977:3	1.012:3	<u>10.1021/acsenerg</u> <u>ylett.0c01664</u>
104	22.78	20.10	HBAI.FABr	Cs0.05FA0.85MA0.1	0.977:3	1.012:3	<u>10.1021/acsenerg</u> ylett.0c01664
105	21.92	20.10	HBAI.FACl	Cs0.05FA0.85MA0.1	0.977:3	1.012:3	<u>10.1021/acsenerg</u> ylett.0c01664

Figure S2. Chemical structures of the interface modification materials listed in Table S1.

Figure S3. Comparison of the reported PCEs from the control devices and the modified devices by the interface modification at the perovskite/spiro-OMeTAD interface

Figure S4. Distribution of the impacts (SHAP values) of the input features on the model output (Device PCE). The color represents the feature value (red high, blue low), and here only the top 15 features with the highest sum of absolute SHAP values are shown.

Features	Train-RMSE (%)	Train-r	Test-RMSE (%)	Test-r
Interface material, control PCE	0.39	0.97	0.73	0.88
Perovskite, control PCE	0.52	0.94	0.73	0.85
Perovskite, interface material	0.57	0.94	1.10	0.49
Perovskite, interface material, control PCE	0.38	0.97	0.70	0.89

 Table S2. RF model performance based on different combinations of the features from interface

 material, perovskite material, and control device performance.

Table S3. Binding energies of the selected materials on Pb-rich surfaces of FA_{0.6}MA_{0.4}PbI₃.

Additives	Chemical structures	Binding energy (eV)
p-MePMA ⁺		-2.19
p-F-PMA ⁺		-2.51
PEA^+	Leter.	-2.59
\mathbf{PA}^+	and the second s	-3.05
EA^+		-3.07
MA^+	e de la constance de	-3.26

Samples	J_{SC} (mA/cm ²)	$V_{OC}(V)$	FF (%)	PCE (%)
Control	25.00±0.10	1.050±0.008	73.23±1.21	19.22±0.41
MAI-0.5	25.00±0.13	1.102 ± 0.007	76.63±0.91	21.11±0.23
MAI-1.0	25.16±0.05	1.143±0.007	77.50±0.41	22.38±0.20
MAI-1.5	24.38±0.34	1.113±0.005	75.45±1.17	20.48±0.20
PEAI	25.30±0.04	1.130±0.006	76.74±0.93	21.94±0.23

Table S4. Summary of the photovoltaic parameters of the PSCs w/wo modification.

Figure S5. *J-V* curves (reverse scan) and detailed parameters of the best-performed PSCs w/wo MAI modification.

Samples	$m_l^{a)}$	$m_2^{b)}$	$R_{\rm S} \left(\Omega \ {\rm cm}^2\right)$	$J_0 (\mathrm{mA \ cm^{-2}})$
Control	2.22	2.21	1.43	2.88×10 ⁻⁶
MAI-1.0	1.72	1.70	1.76	4.27×10 ⁻⁹
PEAI	1.62	1.65	1.90	4.40×10-9

Table S5. Fitted electrical parameters of PSCs based on different devices.

^{a)} m_1 and R_S were obtained from dV/dJ vs $(J_{SC}+J)^{-1}$ curve. ^{b)} m_2 and J_0 were obtained from ln

 $(J_{\rm SC} + J)$ vs $(V - R_{\rm S}J)$ curve.

Figure S6. Cross-sectional scanning electron microscopy (SEM) image of the perovskite film on FTO for SCLC measurement. The thickness of the perovskite layer is about 500 nm.

Reference

- [1] J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Y. Luo, Q. Meng, *Appl. Phys. Lett.*, 2014, **104**, 063901.
- [2] J. You, Y. Yang, Z. Hong, T. B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W. H. Chang, G. Li, Y. Yang, *Appl. Phys. Lett.*, 2014, **105**, 183902.
- [3] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, M. C. Payne, Z. Krist.-Cryst. Mater. 2005, 220, 567.

- [4] K. Refson, P. R. Tulip, S. J. Clark, Phys. Rev. B, 2006, 73, 155114.
- [5] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [6] Y. Wang, B. G. Sumpter, J. Huang, H. Zhang, P. Liu, H. Yang and H. Zhao, *J. Phys. Chem. C*, 2015, **119**, 1136.
- [7] F. H. Isikgor, F. Furlan, J. Liu, E. Ugur, M. K. Eswaran, A. S. Subbiah, E. Yengel, M. D. Bastiani, G. T. Harrison, S. Zhumagali, C. T. Howells, E. Aydin, M. Wang, N. Gasparini, T. G. Allen, A. ur Rehman, E. V. Kerschaver, D. Baran, I. McCulloch, T. D. Anthopoulos, U. Schwingenschlögl, F. Laquai and S. D. Wolf, *Joule*, 2021, 5, 1566.