Support information

Promoting the conversion of S and Li₂S by Co₃O₄ @NC additive in all-solid-state Li-S

batteries

Xuefan Zheng †^a, Yuqi Wu †^a, Cheng Li ^a, Jinxue Peng ^a, Wu Yang ^a, Zhongwei Lv ^a, Haoyue Zhong ^b,

Zhengliang Gong^{a,*}, Yong Yang^{a, b,*}

^a College of Energy, Xiamen University, Xiamen, Fujian 361102, P. R. China

^b State Key Lab of Physical Chemistry of Solid Surfaces and Department of Chemistry College of

Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China

*Corresponding author.

† These authors contributed equally.

E-mail addresses: zlgong@xmu.edu.cn (Z.L. Gong), yyang@xmu.edu.cn (Y. Yang).

Fig. S2 Raman spectra of Li₂S-Co₃O₄@NC and Li₂S-KB.

			· /	•				
Active material	Content (wt%)	Areal loading (mg cm ⁻²)	Test conditions	Cut-off voltage(V) vs. Li	Initial discharge capacity (mAh g ⁻¹)	Number of cycle	capacity retention (%)	Ref.
S	50	4	0.2 mA cm ⁻² at 30°C	1.5-3.0	1313	100	88.9	This work
S	50	12	0.2 mA cm ⁻² at 60°C	1.5-3.0	1343	20	86.4	This work
S	45	/	0.05C at RT	1.5-3.0	791	60	~100	[1]
Te _{0.05} S _{0.95} @pPAN @Li ₇ P ₃ S ₁₁	~10	~1.04-1.3	0.3C at RT	1.0-3.0	1173.1 (2 nd cycle)	500	56.7	[2]
S	40	2.5	1.3 mA cm ⁻² at 25°C	1.1-3.6	1488	100	/	[3]
SeS ₂	40	~1.6	0.4 A g ⁻¹ at 25°C (0.2 A g ⁻¹ for the initial 5 cycles)	1.5-3.0	1116 (5 th cycle)	100	83.8	[4]
S	50	~1.9	0.64 mA cm ⁻² at 25°C	1.1-3.1	1288	1	/	[5]
rGO@S	12.3	0.43	1C at 60°C	1.5-2.8	930	750	89.2	[6]
Se _{0.05} S _{0.95} @pPAN	20	1	167.5 mA g ⁻¹ at RT	1.0-3.0	801 (2 nd cycle)	150	81	[7]
S@BP2000	29.2	0.58	3C at RT	1.4-3.0	991.4	1200	99.4	[8]
S-FeS ₂	30	1	83.5 mA g⁻¹ at 20°C	1.3-3.1	approaching 1200 (20 th cycle)	20	/	[9]
S	38.5	4.5	0.1C at 60°C	1.1-3.1	957.3	50	>90	[10]
S	40	~3.15	1st-3rd:C/20 4th-200th:C/10 at RT	1.3-3.3	1166	220	/	[11]
S	20	~0.8	0.5C at RT	1.4-3.0	1252	1000	100	[12]

Table S1. The electrochemical performance of the as-prepared S-CoNC-LPS is compared with the

previously reported studies.

References

- 1 R.-c. Xu, X.-h. Xia, S.-h. Li, S.-z. Zhang, X.-l. Wang and J.-p. Tu, J. Mater. Chem. A, 2017, 5, 6310-6317.
- 2 W. Zhang, Y. Zhang, L. Peng, S. Li, X. Wang, S. Cheng and J. Xie, *Nano Energy*, 2020, **76**, 105083.
- 3 T. Ando, Y. Sato, T. Matsuyama, A. Sakuda, M. Tatsumisago and A. Hayashi, J. Ceram. Soc. Jpn, 2020, 128, 233-237.
- 4 X. Li, J. Liang, J. Luo, C. Wang, X. Li, Q. Sun, R. Li, L. Zhang, R. Yang, S. Lu, H. Huang and X. Sun, *Adv. Mater.*, 2019, **31**, 1808100.
- 5 N. Tanibata, H. Tsukasaki, M. Deguchi, S. Mori, A. Hayashi and M. Tatsumisago, *J. Mater. Chem. A*, 2017, **5**, 11224-11228.
- 6 X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J. P. Mwizerwa, C. Wang and X. Xu, Adv. Energy Mater., 2017, 7, 1602923.
- 7 Y. Zhang, Y. Sun, L. Peng, J. Yang, H. Jia, Z. Zhang, B. Shan and J. Xie, *Energy Storage Mater.*, 2019, **21**, 287-296.
- 8 Q. Han, X. Li, X. Shi, H. Zhang, D. Song, F. Ding and L. Zhang, J. Mater. Chem. A, 2019, 7, 3895-3902.
- 9 U. Ulissi, S. Ito, S. M. Hosseini, A. Varzi, Y. Aihara and S. Passerini, Adv. Energy Mater., 2018, 8, 1801462.
- 10 A. S. Alzahrani, M. Otaki, D. Wang, Y. Gao, T. S. Arthur, S. Liu and D. Wang, ACS Energy Lett., 2021, 6, 413-418.
- 11 X. Sun, Q. Li, D. Cao, Y. Wang, A. Anderson and H. Zhu, *Small*, 2022, **18**, e2105678.
- 12 B.-S. Zhao, L. Wang, S. Liu, G.-R. Li and X.-P. Gao, ACS Appl. Mater. Interfaces, 2022, 14, 1212-1221.