Electronic Supplementary Information

Self-supported S-doped Fe-based organic framework platform enhances electrocatalysis toward highly efficient oxygen evolution in alkaline media

Cong Ling,‡^a Xinyan Leng,‡^a Xiao-Jie Lu,^a Jing-Han Li,^a Zhengkun Yang*^b and An-Wu Xu*^a

^a Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

^bInstitutes of Physical Science and Information Technology, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education. Anhui University, Hefei, Anhui 230601, China.

*To whom correspondence should be addressed.

Zhengkun Yang; yangzk@ustc.edu.cn

An-Wu Xu; anwuxu@ustc.edu.cn

‡Cong Ling and Xinyan Leng contributed equally to this work

Supporting date

Figure S1. Photograph of (a) NF, (b) Fe-BTB/NF, (c) S_{0.05}-Fe-BTB/NF.

Figure S2. The low- and high-magnification FE-SEM images of (a) Fe-BTB/NF, (b) $S_{0.025}$ -Fe-BTB/NF, (c) $S_{0.05}$ -Fe-BTB/NF and (d) $S_{0.075}$ -Fe-BTB/NF.

Figure S3. (a) TEM, (b) HAADF-STEM image and (c) corresponding element mapping images of Fe-BTB/NF.

Figure S4. EDS spectrum of as-prepared $S_{0.05}$ -Fe-BTB/NF.

Elements	Weight% (EDS)	Atom% (EDS)	Weight% (XPS)	Atom% (XPS)
Fe	18.08	4.78	15.2	4.0
S	1.47	0.68	1.5	0.6
Ο	14.00	12.90	20.6	20.9
С	66.45	81.64	62.7	74.5
Total	100	100	100	100
Fe:S	12.3:1	7.0:1	10.1:1	6.7:1

Table S1. Element percentage of $S_{0.05}$ -Fe-BTB/NF obtained from EDS, and XPS.

Table S2. The Fe and S contents of synthesized S_x -Fe-BTB/NF catalysts measured by ICP-OES.

Catalyst	Fe (weight%)	S (weight%)	Fe:S (weight)	Fe:S (atom)
Fe-BTB/NF	12.53	-	-	-
S _{0.025} -Fe-BTB/NF	12.19	0.51	24.0:1	13.7:1
S _{0.05} -Fe-BTB/NF	11.34	0.95	11.9:1	6.9:1
S _{0.075} -Fe-BTB/NF	10.71	1.39	7.7:1	4.4:1

Figure S5. XPS survey spectrum of S_{0.05}-Fe-BTB/NF sample.

Figure S6. (a) XPS survey spectrum, (b) High-resolution XPS spectrum of Fe 2p, (c) O 1s, and (d) C 1s of as-prepared Fe-BTB/NF sample.

Figure S7. The linear sweep voltammetry (LSV) curves of Fe-BTB/NF doped with different sulfur content in 1.0 M KOH.

Figure S8. Electrochemical impedance spectroscopy for S_x -Fe-BTB/NF various thiourea added amount at an applied potential of 1.5 V (vs. RHE).

Figure S9. CV curves of as-prepared catalysts at different scan rates in 1.0 M KOH. (a) Fe-BTB/NF, (b) S_{0.025}-Fe-BTB/NF, (c) S_{0.05}-Fe-BTB/NF, (d) S_{0.075}-Fe-BTB/NF, (e) bare NF, (f) RuO₂/NF.

Figure S10. The Plots showing the extraction of the C_{dl} for the estimation of the ECSA for S_x -Fe-BTB/NF various thiourea added amount acquired at an applied potential of 1.3 V vs. RHE.

Figure S11. LSV curves of (a) Fe-BTB/NF and (b) $S_{0.05}$ -Fe-BTB/NF before and after 6000 potential cycling tests in 1.0 M KOH between 1.2 and 1.5 V vs. RHE at a scan rate of 50 mV s⁻¹.

Figure S12. HAADF-STEM image and corresponding EDS element mapping images of S_{0.05}-Fe-BTB/NF after OER electrocatalysis.

Figure S13. Comparison of high resolution S 2p XPS spectra of $S_{0.05}$ -Fe-BTB/NF before and after OER stability test.

Figure S14. *Operando* Raman spectroscopy measurements of (a) Fe-BTB/NF and (b) S_{0.05}-Fe-BTB/NF catalysts, respectively.

Table S3. Comparison of OER performance in 1.0 M KOH for S_{0.05}-Fe-BTB/NF with other reported Fe-based electrocatalysts and MOFs as electrocatalysts loaded on conductive substrate (*j*: Current density; η_j : Overpotential at the corresponding current density).

Catalyst	j	η_j	Tafel Slope	References
	(mA cm ⁻²)	(mV)	(mV dec ⁻¹)	
S _{0.05} -Fe-BTB/NF	20	231	41	This work
Fe-BTB/NF	20	268	44	This work
NiFe-LDH/NF	20	260	50	Chem. Commun., 2014, 50, 6479
Ni _{1.85} Fe _{0.15} P NSAs/NF	20	270	96	ACS Appl. Mater. Interfaces, 2017, 9, 31, 26001
(Ni _{0.5} Fe _{0.5}) ₂ P/NF	20	219	57	J. Mater. Chem. A, 2017, 5, 11229
FeOOH(Se)/IF	10	287	54	J. Am. Chem. Soc., 2019, 141, 7005
FeOOH/Co/	20	250	32	Angew. Chem. Int. Ed.,

FeOOH-NF

2016, 55, 3694

FeSe ₂ /NF	10	245	-	Angew. Chem. Int. Ed., 2017, 56, 1056
Fe-Ni ₃ S ₂ /FeNi	20	~320	54	Small, 2017, 13, 1604161
S-NiFe ₂ O ₄ /NF	10	267	37	Nano Energy, 2017, 40, 264
FeNi/NiFe ₂ O ₄ @	10	~316	60	ACS Appl. Mater. Interfaces, 2016, 8, 34396
NC-800				
FeNi LDH-rGO	10	210	39	Angew. Chem. Int. Ed., 2014, 53, 7584
Ru-MnFeP/NF	20	191	69	Adv. Energy Mater., 2020, 10, 2000814
Co ₃ O ₄ /Fe _{0.33} Co _{0.66} P /NF	50	215	60	Adv. Mater., 2018, 30, 1803551
(Ni ₂ Co ₁) _{0.975} Fe _{0.075} - MOF-NF	10	257	41	Adv. Mater., 2019, 31, 1901139
FeNi ₂ S ₄ /GA/NF	20	~290	66	J. Mater. Chem. A, 2018, 6, 19417
NiFe LDH @NiCoP/NF	10	220	49	Adv. Funct. Mater., 2018, 28, 1706847
7.5-1h LDH- MOF@NF	10	275	47	Adv. Funct. Mater., 2019, 29, 1903875
NiFeMn-LDH/CP	20	289	47	Chem. Commun., 2016, 52, 908
NiFe-MOF-74/NF	20	~240	76	Chem. Commun., 2018, 54, 7046
NiFe-LDH/CNT	10	~240	40	Nat. Commun., 2014, 5, 4477
W _{0.5} Co _{0.4} Fe _{0.1} /NF	10	250	32	Angew. Chem. Int. Ed., 2017, 56, 4502
Fe _{17.5%} -Ni ₃ S ₂ /NF	20	222	42	ACS Catal., 2018, 8, 5431
FeCoP UNSAs/NF	20	260	63	Nano Energy, 2017, 41, 583

NFN-MOF/NF	20	~260	58.8	Adv. Energy Mater., 2018, 8, 1801065
NiFe-MOF/NF	10	240	34	Nat. Commun., 2017, 8, 15341
CoFePO@NF	20	~295	52	ACS Nano, 2016, 10, 8738
NiFe LDH@ NiCoP/NF	10	220	48.6	Adv. Funct. Mater., 2018, 28, 1706847
Am FePO ₄ /NF	10	218	43	Adv. Mater., 2017, 29, 1704574
FeOOH/Ni ₃ N/CC	20	~265	65	Appl. Catal. B, 2020, 269, 118600
NiMo-PVP/NiFe- PVP/CC	10	297	48	Adv. Energy Mater., 2017, 7, 1700220
NiO/NiFe LDH/CP	~30	205	30	Adv. Mater., 2019, 31, 1804769
NiFe-LDH@NiCu	10	218	57	Adv. Mater., 2019, 31, 1806769
NiFe LDH/CNT	10	247	31	J. Am. Chem. Soc., 2013, 135, 8452
NiFe LDHs@ FeOOH/NF	10	208	42	ACS Appl. Mater. Interfaces, 2017, 9, 464.

Table S4. The concentration of electrochemical extraction of Fe species of synthesized Fe-BTB/NF and $S_{0.05}$ -Fe-BTB/NF catalysts measured by ICP-MS after 6000 CV cycles.

Catalyst	Fe content from electrochemical extraction (mg L ⁻¹)		
Fe-BTB/NF	0.038		
S _{0.05} -Fe-BTB/NF	0.018		