Supporting Information:

Inkjet-printed transparent micro-supercapacitors with morphology tailored co-continuous mesoporous Mn₃O₄

Sushree Sangita Priyadarsini^a, Suryansh Saxena^{a, †}, Jyoti Ranjan Pradhan^a, Subho Dasgupta^{a,*}

^aDepartment of Materials Engineering, Indian Institute of Science (IISc), C V Raman Avenue, Bangalore: 560012, Karnataka, India

⁺Current affiliation: Department of Material Science and Engineering, University of California, San Diego, USA

*Email: dasgupta@iisc.ac.in

Keywords: Flexible electronics; Inkjet printing; Transparent micro-supercapacitors

Content:

- A. Transmission electron micrograph of printed Mn₃O₄ thin film.
- B. Scanning tunnelling electron microscopy images of printed Mn₃O₄ thin film.
- C. Cyclic voltammogram of drop-cast electrodes under 3-electrode measurement setup.
- D. Galvanostatic (chrono-potentiometric) charge/discharge measurements of drop-cast electrodes under 3electrode measurement setup.
- E. Capacitance comparison for different concentration of Mn₃O₄ ink estimated with 3-electrode measurement setup.
- F. Schematic to understand the change in mechanism of charge storage from drop cast to printed electrode with 0.3 M ink.
- G. Nyquist plot of the printed symmetric MSC with water-based and DMSO-based electrolytes.
- H. Comparison of cyclic-voltammograms measured with DMSO-based electrolyte having LiClO₄ and NaClO₄ as the supporting electrolytes.
- I. Scanning electron micrograph of mesoporous Mn₃O₄ film in as-printed and annealed condition and after 5000 galvanostatic charge/discharge cycles.
- J. Scanning electron micrograph of the Mn₃O₄ film on Au coated Kapton before and after the dynamic mechanical (bending fatigue) test.
- K. Atomic force micrographs of mesoporous Mn₃O₄ film in as-printed and annealed condition and after 100 complete bending fatigue test cycles.
- L. Comparison of the present work with previous literature reports of Mn_3O_4 and inkjet-printed supercapacitors.
- M. Galvanostatic (chrono-potentiometric) charge/discharge measurements of the flexible MSC before and after the dynamic mechanical (bending fatigue) test.
- N. Comparison of the present work with literature reports of $\mathsf{Mn}_3\mathsf{O}_4$ supercapacitors
- O. Comparison of gravimetric energy and power density of present work with previously reported printed supercapacitors that are available in the literature
- P. Comparison of volumetric energy and power density of present work with previously reported printed supercapacitors that are available in the literature

A. Transmission electron micrograph of printed Mn_3O_4 thin film

Figure S1 (a) Transmission electron micrograph, and (b) Selected area electron diffraction of the printed and annealed active material ink with all the planes matching with Mn_3O_4 .

B. Scanning tunnelling electron microscopy images of printed Mn₃O₄ thin film

Figure S2 (a) STEM image of printed and annealed active material showing co-continuous mesoporous structure, (b) and (c) show manganese and oxygen signal from EDX elemental mapping performed at STEM mode.

C. Cyclic voltammogram of drop-cast electrodes under 3-electrode measurement setup

Figure S3 Electrochemical characterization of the drop-cast Mn_3O_4 electrodes using 3-electrode setup, and with respect to Ag/AgCl as the reference electrode. (a) Cyclic voltammogram of 0.3 M ink-based Mn_3O_4 electrode, (b) Calculated gravimetric specific capacitance of the 0.3 M ink-based electrode as a function of voltage scan rate, (c) Cyclic voltammogram of 0.06 M ink based Mn_3O_4 electrode, (d) Gravimetric specific capacitance of the 0.06 M ink-based electrode as a function of voltage scan rate, (e) Cyclic voltammogram of 0.03 M ink based Mn_3O_4 electrode, (b) Gravimetric specific capacitance of the 0.06 M ink-based electrode as a function of voltage scan rate, (e) Cyclic voltammogram of 0.03 M ink based Mn_3O_4 electrode, (b) Gravimetric specific capacitance of the 0.03 M ink-based electrode as a function of voltage scan rate.

D. Galvanostatic (chrono-potentiometric) charge/discharge measurements of drop-cast electrodes under 3-electrode measurement setup

Figure S4 Electrochemical characterization of the drop-cast Mn_3O_4 electrodes using 3-electrode setup and with respect to Ag/AgCl as the reference electrode. (a) GCD curves of 0.3 M ink-based Mn_3O_4 electrode, (b) Gravimetric specific capacitance of the 0.3 M ink-based Mn_3O_4 electrode as a function of specific current, (c) GCD curve of 0.06 M ink-based Mn_3O_4 electrode, (d) Gravimetric specific capacitance of the 0.06 M ink-based Mn_3O_4 electrode as a function of specific current, (e) GCD curve of 0.03 M ink based Mn_3O_4 electrode, (b) Gravimetric specific capacitance of the 0.03 M ink-based Mn_3O_4 electrode as a function of specific capacitance of the 0.03 M ink-based Mn_3O_4 electrode as a function of specific capacitance of the 0.03 M ink-based Mn_3O_4 electrode as a function of specific capacitance of the 0.03 M ink-based Mn_3O_4 electrode as a function of specific capacitance of the 0.03 M ink-based Mn_3O_4 electrode as a function of specific capacitance of the 0.03 M ink-based Mn_3O_4 electrode as a function of specific capacitance of the 0.03 M ink-based Mn_3O_4 electrode as a function of specific current.

E. Capacitance comparison for different concentration of Mn_3O_4 ink estimated with 3-electrode measurement setup

Figure S5 Comparison of estimated capacitance values of the Mn_3O_4 electrode prepared with inks of three different concentrations that are, 0.3 M, 0.06 M and 0.03 M under the 3-electrode setup with respect to Ag/AgCl as the reference electrode. (a) Comparative gravimetric specific capacitance as a function of the voltage scan rate and (b) Comparative gravimetric specific capacitance as a function of specific current.

F. Schematic to understand the change in mechanism of charge storage from drop cast to printed electrode with 0.3 M ink

Figure S6 The proposed reason behind different mechanism of charge storage with changing fabrication protocol of electrode from drop cast to printing. The thickness as well as the porosity does not remain constant when the fabrication protocol is changed from drop cast to printing with 0.3 M ink.

G. Nyquist plot of the printed symmetric MSC with water-based and DMSO-based electrolytes

Figure S7 The measured differential impedance spectroscopy data showing (a) the Nyquist plots of the symmetric MSC with water based (dash-dot lines) and DMSO based (solid line) CSPE measured at various applied DC potential between 0 V to 1 V and 0 V to 1.3 V, respectively; (b) equivalent circuit diagram that has been used to fit the Nyquist plots (c) DMSO based, (d) water based MSC, measured at 0 V, applied DC bias; the red dots are the experimental data points and the and blue solid line is fit using the equivalent circuit shown in (b).

In Figure S7b, we have assumed an electrical circuit, where R_{ext} , R_{el} and R_p are the external resistance, bulk electrolyte resistance and the resistance towards pseudocapacitive charge storage or the charge transfer resistance, respectively. The R_{el} has been considered in parallel to the bulk capacitance of the solvent of the electrolyte, C_b . The *RC*-circuit corresponding to the bulk electrolytic behaviour has been considered to be in series with the external resistance of the MSC. On the other hand, the resistance to pseudocapacitive charge storage has been kept in parallel to the pseudocapacitance C_p . The constant phase element CPE_{DL} assumed here takes care of the EDL capacitance along with the huge porosity of the electrode material and also the surface states that may be present and causing local variations in conductivity.

H. Comparison of cyclic-voltammogram measured with DMSO-based electrolyte having LiClO₄ and NaClO₄ as the supporting electrolytes

Figure S8 Comparison of cyclic voltammograms of printed all solid Mn_3O_4 (ink with 0.3 M concentration) based transparent microsupercapacitors with non-aqueous (DMSO) based solid electrolyte having LiClO₄ and NaClO₄ as the supporting electrolytes for a potential window of -1.3 V to 1.3 V under 2-electrode setup and measured with voltage scan rate of (a) 200 mV s⁻¹, (b) 100 mV s⁻¹, (c) 50 mV s⁻¹, (d) 20 mV s⁻¹, (e) 10 mV s⁻¹, (f) 5 mV s⁻¹, and (g) 2 mV s⁻¹.

I. Scanning electron micrograph of mesoporous Mn₃O₄ film in as-printed and annealed condition and after 5000 galvanostatic charge/discharge cycles.

Figure S9 SEM images of (a) printed and annealed mesoporous Mn_3O_4 layer, (b) mesoporous Mn_3O_4 electrode layer after 5000 galvanostatic charge-discharge cycles.

The comparative surface morphology analysis before and after the galvanostatic charge-discharge cycles indicates that a nominal surface reconstruction of the Mn_3O_4 electrode material may have happened. Such surface reconstruction after a large number of cycles is well-known for battery electrodes, and here in the present case, it can be also expected for the intercalation-type pseudocapacitive microsupercapacitor electrodes.

J. Scanning electron micrograph of the Mn₃O₄ film on Au coated Kapton before and after the dynamic mechanical (bending fatigue) test

Figure S10 Comparison of the scanning electron micrograph of the printed Mn_3O_4 film on Au coated Kapton (a) before and (b) after mechanical bending fatigue tests with bending diameter of 10 mm.

K. Atomic force micrographs of mesoporous Mn₃O₄ film in as-printed and annealed condition and after 100 complete bending fatigue test cycles.

Figure S11 Atomic force micrograph of mesoporous Mn_3O_4 film (a,c) in as-printed and annealed condition, and (b,d) after 100 complete bending fatigue test cycles. Frames (a,b) show 1×1 μ m², and frames (c,d) show 2×2 μ m² area on the Mn_3O_4 film surface, respectively.

The AFM images taken on mesoporous Mn3O4 film after the bending fatigue test appear to have noticeable microcracks, and an increased overall surface roughness. For example, the RMS surface roughness value for the 1×1 μ m² frame size AFM image increased from 2.97 nm for the as-prepared film (Figure S11a) to 5.35 nm after the bending fatigue test (Figure S11b).

L. Comparison of the present work with literature reports of Mn₃O₄ and inkjet-printed supercapacitors

Fig. S12. (a) Ragone plot of the printed micro-supercapacitor at potential window of 2 V (water based solid electrolyte) and 2.6 V (DMSO based solid electrolyte) in comparison with the previously reported symmetric Mn_3O_4 supercapacitors, fabricated by successive ionic layer adsorption and reaction (SILAR) method,^{S1} and by a microwave-assisted chemical route

(MACR).⁵² (b) Ragone plot with gravimetric energy density and power density of the previously reported printed supercapacitor in comparison to the present work;^{53–523} and (c) Ragone plot with volumetric energy density and power density of the previously reported printed supercapacitor in comparison to the present work. ^{516, 520, 524–557}

The energy and power density of the present inkjet-printed planar symmetric micro-supercapacitors have been compared with the previously reported symmetric supercapacitors based on Mn₃O₄ and is shown in a Ragone plot presented in Fig. S10a. The inkjet-printed symmetric MSC shows high energy density as well as power density as compared to the previously reported Mn₃O₄ based symmetric supercapacitors owing to the high surface-to-volume ratio of co-continuous mesoporous microstructure and homogeneous film formation with controlled delivery of ink volume with inkjet printing. The Ragone plot showing the gravimetric and volumetric energy density and power density of the present printed MSC is also compared with other printed micro-supercapacitors involving wide range of electrode materials that have been reported in the literature and is summarized in Fig. S10b and S10c, respectively. This comparative viewgraphs show that the inkjet-printed MSCs with co-continuous mesoporous electrode architecture, demonstrated in the present study, offers excellent gravimetric and volumetric values when compared to the literature data, either involving previous reports on Mn₃O₄ electrodes, or earlier work on printed micro-supercapacitors that have used carbon based on other high conducting or pseudocapacitive electrode materials.

M. Galvanostatic (chrono-potentiometric) charge/discharge measurements of the flexible MSC before and after the dynamic mechanical (bending fatigue) test

Fig. S13. The galvanostatic charge/discharge plots of the flexible MSC on kapton substrate before and after the mechanical bending fatigue test and all parameters calculated from the GCD curves. (a) Galvanostatic charge/discharge with varying current before mechanical bending fatigue test; (b) Galvanostatic charge/discharge with varying current after mechanical bending fatigue test with bending radius of 5 mm; Comparison of (c) Specific gravimetric capacitance and energy density, (d) power density as a function of specific current, (e) Specific volumetric capacitance and energy density, and (f) power density as a function of current density, before and after the dynamic bending test.

Ν.	Table	S1	Comparison	of	the	present	work	with	literature	reports	of	Mn ₃ O ₄
	superc	capad	citors									

Material	Fabrication	Processing	Measurement	Max. cap	acitance	Electrolyte	Ref.
details	method	(°C)	technique	3	2	usea	
				electrode	electrode		
Mn ₃ O ₄	Electrochemical	RT	CV	145 F g ⁻¹		Aqueous KCl	\$ 58
lamellae+19 %	deposition			at 2 mV s ⁻¹			
C Mn₃O₄ film	Electrostatic	200	CV	330 F g ⁻¹		0.1 M	\$ 59
	spray deposition			at 50 mV		Na ₂ SO ₄	
				S-1			
Mn ₃ O ₄ powder	Hydrothermal	120	CV	170 F g ⁻¹		1 M Na ₂ SO ₄	\$ 60
				at 500 mV			
Mp.O. film	Chomical bath	80	CV/	5 ⁻¹ 102 E g-1		1 M No-SO	\$ 61
141130411111	deposition	00	CV	at 10 mV		1 101 1022504	
				S ⁻¹			
Mn ₃ O ₄ powder	Hydrothermal	180	CV	322 F g ⁻¹		1 M Na ₂ SO ₄	\$ 62
			_	at 5 mV s ⁻¹			
Mn₃O₄ film	Chemical bath	RT	CV	284 F g^{-1}		1M Na2SO4	S 63
Mp ₂ O ₂ film		PT	CV.	$\frac{1}{214} = \sigma^{-1}$		1 M NasOr	S 64
1011130411111	laver absorption		CV	at 5 mV s ⁻¹		1 101 1082504	
	and reaction						
Mn ₃ O ₄ powder	Hydrothermal	200	CV	148 F g ⁻¹		2 M KCl	\$ 65
				at 5 mV s ⁻¹			
Mn ₃ O ₄ film	SILAR	RT	CV		72 F g ⁻¹ at	$1 \text{ M Na}_2 \text{SO}_4$	\$1
					(at 70 °C)		
Mn₃O₄ film	Chemical bath	70	CV	398 F g ⁻¹		1 M Na ₂ SO ₄	\$ 66
5 .	deposition			at 5 mV s ⁻¹			
Mn ₃ O ₄ powder	Sol-gel method	350	СР		30.8 F g ⁻¹	1 M Li ₂ SO ₄	\$ 67
					at 50 mA		
Mn ₂ O ₄ nowder	Ultrasonic	RT	CP	262 Ε σ ⁻¹	g	1 M Na ₂ SO /	S 68
	process		Cr	at 0.4 A g ⁻¹		11011082504	
Mn ₃ O ₄ powder	Pulsed laser	RT	CV	120 F g ⁻¹		1 M Na ₂ SO ₄	S 69
	deposition			at 100 mV			
				S ⁻¹			
Mn ₃ O ₄ powder	Microwave-	300	CV		1330.16 F	6 М КОН	\$2
	chemical method				g - at 0.01 mV s ⁻¹		
Mn ₃ O ₄	Electrospinning	350	CV	190 F g ⁻¹	1117.3	1 M KCl	\$ 70
nanofibers	1 0			at 3 mV s ⁻¹			
Mn ₃ O ₄ powder	Hydrothermal	150	СР	348 F g ⁻¹		1 M Na ₂ SO ₄	\$ 71
				at 0.5 mA			
Mp O powdor	Chamical	DT	CD	248 E g-1			\$72
Will ₃ O ₄ powder	precipitation		CP	at 0.5 mA		1 WI Wa2504	0/2
	method			cm ⁻²			
Amorphous	Electrodeposition	100	CV		3.05 F cm ⁻	1 M NaOH,	\$ 73
porous Mn ₃ O ₄	method				³ at 5 mV	PVA	
			a /		S ⁻¹		674
Mn ₃ O ₄ cubes	Sol-gel method	500	CV	$667 + g^{-1}$		6 M KOH	374
Porous Mn ₂ O ₄	Spray pyrolysis	350	CV	394 F g ⁻¹		1 M Na ₂ SO ₄	\$ 75
thin film	Spicy pyronysis	230		at 10 mV		1.1.1.102504	
				S-1			
Mn ₃ O ₄ film	Electron beam	-	CV		535 F cm ⁻	LiCl + PVA	\$ 76
	evaporation				3 at 2 mV		
					5"1		

Mn ₃ O₄ powder	Hydrothermal	150	CV	198 F g ⁻¹ at 0.5 mA cm ⁻²		0.5 M Li ₂ SO ₄	\$ 77
Mn ₃ O ₄ beaded chains	Electro-spinning process	1000	СР	445 F g ⁻¹ at 0.5 A g ⁻¹		1 M Na ₂ SO ₄	\$ 78
Mn₃O₄ film	Electron beam evaporation	500	СР	568 F g ⁻¹ at 1 A g ⁻¹		1 M Na ₂ SO ₄	\$ 79
Mn ₃ O ₄ nanoparticles	Co-precipitation method	RT	СР	260 F g ⁻¹ at 1 A g ⁻¹		1 M Na ₂ SO ₄	\$ 80
Mn ₃ O ₄ nanoparticles	Ultrasonic irradiation assisted co- precipitation method	120	CP	296 F g ⁻¹ at 1 A g ⁻¹		ЗМ КОН	S 81
Mn₃O₄ film	Evaporation Induced Self Assembly	400	cv	1201 F g ⁻¹ at 2 mV s ⁻¹	2411 F cm ⁻³ , 679.5 F g ⁻¹ at 2 mV S ⁻¹	1M aq. LiCl (3- electrode), DMSO + LiClO ₄ based gel (MSC)	This work

O. Table S2 Comparison of gravimetric energy and power density of present work with previously reported printed supercapacitors that are available in the literature.

Material	Fabrication method	Potential window (V)	Energy density (W.h kg ⁻¹)	Power density (W	Ref.
				kg⁻¹)	
SWCNT, LiPF₀/EC:DEC	Spray coating	3	6	70000	S3
CNT,	Inkjet Printing	3	41.25	250000	S4
LiPF ₆ /EC:DEC	, ,				
SWCNT + RuO ₂ nanowire,	Inkjet Printing	1	18.8	96000	\$15
PVA/H ₃ PO ₄	, ,				
Graphene oxide nanosheet,	Inkjet Printing	1	1.34	2190	\$17
1M H ₂ SO ₄	, ,				
NGP/PANI,	Screen Printing	1	9.3	454000	S18
1M H ₂ SO ₄	0				
Graphene, Polyaniline	Inkjet Printing	0.8	24.02, 13.29	400.33,	S19
	, ,		,	3202.4	
Graphene Oxide,	Direct printing	3.5	63	25500	S20
EMIMBF ₄					
Graphene,	Inkjet Printing	3	5.5	1000	\$21
EMIMBF ₄	, ,				
Au/MnO _x nanocone	Contact-printing	1.8	46.8	720	S22
MnO ₂ ,	Direct Printing	0.8	25.3	81000	S23
LiCI/PVA	5				
MWCNT,	Inkjet Printing	3	16.2	45000	S5
[EMIM][BF ₄] gel	, ,				
Activated carbon/CNT,	Inkjet Printing	2	10	30000	S6
[BMIM][BF ₄]/ETPTA	, ,				
Graphene oxide,	Inkjet Printing	0.8	10	10000	S7
PVA/H ₂ SO ₄ gel	, ,				
SWCNT + PANI,	Spray printing	0.8	7.9	200	S8
PVA/H ₃ PO ₄					
MnO ₂ /T-PANI, porous carbon,	Stencil printing	1.8	52.7	720	S9
1 M Na ₂ SO ₄					
MnO ₂ /Ag,	Inkjet Printing	1	17.5	500.95	\$10
PVA/KOH					
Ni(OH) ₂ /RGO + AC,	Inkjet Printing	1.6	37.7, 64.8	16000, 800	\$11
KOH soaked PTFE					
Ni-Co LDH/Ag/rGO on CC,	Inkjet Printing	1.6	76	480	\$12
KOH soaked paper					
Graphene/CoS ₂ /Ni ₃ S ₄ ,	Screen printing	1.5	44.9	224.8	S13
PVA/KOH					
Mesoporous WO ₃ /NiO,	Printing	2.3	10.6	9600	S14
LiClO ₄ + propylene carbonate					
Graphene/Mn ₃ O ₄ /EC/CNT,	Direct printing	0.8	6.19	556.7	S16
PVDF/LiClO ₄					
Mn ₃ O ₄ ,	Inkjet printing	2	125	438726	This
PVA/LiCl					work
Mn ₃ O ₄ ,	Inkjet printing	2.6	353	581412	
PVA/LiClO₄/DMSO					

P. Table S3 Comparison of volumetric energy and power density of present work with previously reported printed supercapacitors that are available in the literature.

Material	Fabrication method	Potential window (V)	Energy density (mW.h cm ⁻³)	Power density (W cm ⁻³)	Ref.
Polyacrylonitrile, EMIMBF4	Spin-on nanoprinting (SNAP)	3	0.94	1.48	\$34
Graphene Oxide, EMIMBF4	Direct printing	3.5	1.06	0.408	S20
Nitrogen doped reduced graphene oxide	Screen Printing	0.8	0.3	0.2	S45
MnO2/onion-like carbon, PVA:H₃PO₄	Screen Printing	0.8	0.6, 0.5, 0.25, 0.15	0.008, 0.04, 0.02, 0.08	S52
Graphene, Na₂SO₄:PVA	Stencil printing	0.8	0.15, 0.04	0.08, 0.4	S53
MnO ₂ + CNT/Ag nanoparticle, 4 M LiCl	Inkjet Printing	1.8	1.28	0.096	S54
(K ₂ Co ₃ (P ₂ O ₇) ₂ .2H ₂ O whiskers+ graphene nanosheets,	Inkjet Printing	1.07	0.96, 0.45	0.005, 0.55	S55
Graphene, PVA-H₂SO₄ gel	micro-extrusion printing	1	7	0.03	S56
Graphene, PVA/H ₃ PO ₄ gel	Inkjet Printing	1	2.47	40.3	S57
V ₂ O ₅ /CNT, PVA/LiCl	Facile Printing	0.8	1.47	0.27	S24
PEDOT:PSS-CNT/Ag, PVA/H₃PO₄	Inkjet printing	0.9	42.1	0.089	S25
Graphene, EMIMBF₄ ionic liquid	Spray printing	4	19.6	0.3	S26
Graphene	Inkjet printing	1	1	0.1	\$27
Ti ₃ C ₂ T _x , PVA/H ₃ PO ₄	Laser printing	0.6	5.48–6.10	0.2-1	S28
Graphene oxide + MnO ₂ , PVA/LiCl	Inkjet printing	1	22	0.099	S29
Graphene, KI/ H ₂ SO ₄	Spray printing	1.2	0.026	0.013	S30
δ-MnO₂, PVA/LiCl	Screen printing	0.8	0.18	0.018	531
Nitrogen doped nanoporous carbon, PVA/H2SO4	Contact printing	0.8	58	22	S32
RGO/MoO₃, PVA/H2SO4 gel	Inkjet printing	0.8	2	0.018	S33
NiO, PVA/KOH gel	Inkjet printing	1.5	400	1	S35
Graphene, Nanographene oxide/H ₃ PO ₄	Inkjet printing	1	0.2	0.004	S36
Graphene/CNT, PVA/H ₃ PO ₄	Screen printing	1	10.7	3.17	\$37
MoO ₃ nanorods, Na-alginate hydrogel	Screen printing	2.8	47.11	0.4	S38
RuO2 on Ti ₃ C ₂ T _x , PVA/KOH gel	Screen printing	0.6	13.5	48.5	S39
MnO ₂ @C/VN, MgSO ₄ -PAM gel	Screen printing	2.4	13.1	0.44	S40
RuO ₂ .xH ₂ O NP/AgNW/GO, PVA/KOH gel	Screen printing	2	18.8	40.9	S41
Graphene, EMIMNTF2 II	Screen printing	2.7	1.81	0.297	S42
Fe–MnO ₂ nanosheet, PVA/LiCl	Inkjet printing	1	1.13	0.11	S43

Ti ₃ C ₂ T _x MXene,	Inkjet printing	1	100.2	1.9	S44
PVA/H ₂ SO ₄ gel					
Graphene,	Inkjet printing	1	1.2	0.1	S46
PVA/H ₂ SO ₄ gel					
PANI,	Laser printing	0.8	2.8, 4.8	0.4, 0.12	S47
PVA/H ₂ SO ₄ gel					
MoS ₂ ,	Inkjet printing	0.8	0.215	0.079	S48
PVA/H ₂ SO ₄ gel					
MOF-199@ZIF-67/C,	Laser printing	1	0.4, 0.15	0.08, 9	S49
H ₂ SO ₄					
Graphene/Mn ₃ O ₄ /EC/CNT,	Direct printing	0.8	1.35	0.12	S16
PVDF/LiClO ₄					
Nitrogen doped carbon,	Inkjet printing	1	0.9	0.4	S50
PVA/H ₂ SO ₄ gel					
RGO@PANI, PVA/H ₂ SO ₄ gel	Inkjet printing	1	76.94	5593.7	S51
Mn ₃ O ₄ ,	Inkjet printing	2	440	1557	This
PVA/LiCl					work
Mn ₃ O ₄ ,	Inkjet printing	2.6	1250	2063	
PVA/LiClO₄/DMSO					

References

- S1 D. P. Dubal, A. D. Jagadale and C. D. Lokhande, *Electrochim. Acta*, 2012, **80**, 160–170.
- S2 V. C. Bose and V. Biju, Bull. Mater. Sci., 2015, 38, 865–873.
- S3 M. Kaempgen, C. K. Chan, J. Ma, Y. Cui and G. Gruner, *Nano Lett.*, 2009, **9**, 1872–1876.
- S4 L. Hu, H. Wu and Y. Cui, Appl. Phys. Lett., 2010, 96, 1–4.
- S5 S. K. Ujjain, P. Ahuja, R. Bhatia and P. Attri, *Mater. Res. Bull.*, 2016, 83, 167–171.
- S6 K. H. Choi, J. T. Yoo, C. K. Lee and S. Y. Lee, *Energy Environ. Sci.*, 2016, **9**, 2812–2821.
- S7 Z. Pei, H. Hu, G. Liang and C. Ye, *Nano-Micro Lett.*, 2017, **9**, 1–11.
- S8 R. Wang, Q. R. Wang, M. J. Yao, K. N. Chen, X. Y. Wang, L. L. Liu, Z. Q. Niu and J. Chen, *Rare Met.*, 2018, 37, 536– 542.
- S9 L. Jia, L. Zheng, W. Wang, Y. Shi, Q. Zhang and X. Xu, *Mater. Lett.*, 2019, 252, 80–83.
- S10 T. Cheng, Y. Wu, Y. Chen, Y. Zhang, W. Lai and W. Huang, *Small*, 2019, **15**, 1901830.
- S11 X. Li, R. Chen, Y. Zhao, Q. Liu, J. Liu, J. Yu, J. Li, P. Liu, J. Li and J. Wang, Chem. Eng. J., , DOI:10.1016/j.cej.2019.121988.
- X. Li, Y. Zhao, J. Yu, Q. Liu, R. Chen, H. Zhang, D. Song, R. Li, J. Liu and J. Wang, J. Colloid Interface Sci., 2019, 557, 691–699.
- S13 D. Jiang, H. Liang, W. Yang, Y. Liu, X. Cao, J. Zhang, C. Li, J. Liu and J. J. Gooding, Carbon N. Y., 2019, 146, 557–567.
- S14 K.-W. Kim, T. Y. Yun, S.-H. You, X. Tang, J. Lee, Y. Seo, Y.-T. Kim, S. H. Kim, H. C. Moon and J. K. Kim, NPG Asia Mater., 2020, 12, 84.
- S15 P. Chen, H. Chen, J. Qiu and C. Zhou, *Nano Res.*, 2010, **3**, 594–603.
- S16 M. L. Seol, E. Sadatian, S. Jang, C. Hill, I. Nam, J. W. Han and M. Meyyappan, ACS Appl. Electron. Mater., 2020, 2, 3643–3649.
- S17 L. T. Le, M. H. Ervin, H. Qiu, B. E. Fuchs and W. Y. Lee, *Electrochem. commun.*, 2011, **13**, 355–358.
- S18 Y. Xu, M. G. Schwab, A. J. Strudwick, I. Hennig, X. Feng, Z. Wu and K. Müllen, Adv. Energy Mater., 2013, 3, 1035– 1040.
- S19 K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang and Y. Liu, ACS Appl. Mater. Interfaces, 2014, 6, 16312–16319.
- S20 H. Jung, C. Ve Cheah, N. Jeong and J. Lee, *Appl. Phys. Lett.*, , DOI:10.1063/1.4890840.
- S21 M. H. Ervin, L. T. Le and W. Y. Lee, *Electrochim. Acta*, 2014, **147**, 610–616.
- S22 Y. Qiu, Y. Zhao, X. Yang, W. Li, Z. Wei, J. Xiao, S. F. Leung, Q. Lin, H. Wu, Y. Zhang, Z. Fan and S. Yang, *Nanoscale*, 2014, **6**, 3626–3631.
- S23 J. Qian, H. Jin, B. Chen, M. Lin, W. Lu, W. M. Tang, W. Xiong, L. W. H. Chan, S. P. Lau and J. Yuan, Angew. Chemie -Int. Ed., 2015, 54, 6800–6803.
- S24 G. Yilmaz, C. X. Guo and X. Lu, *ChemElectroChem*, 2016, **3**, 158–164.
- S25 W. Liu, C. Lu, H. Li, R. Y. Tay, L. Sun, X. Wang, W. L. Chow, X. Wang, B. K. Tay, Z. Chen, J. Yan, K. Feng, G. Lui, R. Tjandra, L. Rasenthiram, G. Chiu and A. Yu, *J. Mater. Chem. A*, 2016, **4**, 3754–3764.
- S26 X. Shi, Z. S. Wu, J. Qin, S. Zheng, S. Wang, F. Zhou, C. Sun and X. Bao, Adv. Mater., 2017, 29, 1–9.
- S27 J. Li, S. Sollami Delekta, P. Zhang, S. Yang, M. R. Lohe, X. Zhuang, X. Feng and M. Östling, ACS Nano, 2017, **11**, 8249–8256.
- S28 H. Hu and T. Hua, J. Mater. Chem. A, 2017, 5, 19639–19648.
- S29 P. Sundriyal and S. Bhattacharya, ACS Appl. Mater. Interfaces, 2017, 9, 38507–38521.
- S30 B. Nagar, D. P. Dubal, L. Pires, A. Merkoçi and P. Gómez-Romero, ChemSusChem, 2018, 11, 1849–1856.

- S31 Y. Wang, Y. Z. Zhang, D. Dubbink and J. E. ten Elshof, *Nano Energy*, 2018, 49, 481–488.
- S32 S. Lochmann, J. Grothe, K. Eckhardt, D. Leistenschneider, L. Borchardt and S. Kaskel, *Nanoscale*, 2018, **10**, 10109–10115.
- S33 B. Li, N. Hu, Y. Su, Z. Yang, F. Shao, G. Li, C. Zhang and Y. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 46044– 46053.
- B. Duong, Z. Yu, P. Gangopadhyay, S. Seraphin, N. Peyghambarian and J. Thomas, Adv. Mater. Interfaces, 2014, 1, 1–5.
- S35 P. Giannakou, M. G. Masteghin, R. C. T. Slade, S. J. Hinder and M. Shkunov, *J. Mater. Chem. A*, 2019, **7**, 21496–21506.
- S36 S. Sollami Delekta, K. H. Adolfsson, N. Benyahia Erdal, M. Hakkarainen, M. Östling and J. Li, *Nanoscale*, 2019, **11**, 10172–10177.
- S37 J. K. Chih, A. Jamaluddin, F. Chen, J. K. Chang and C. Y. Su, J. Mater. Chem. A, 2019, 7, 12779–12789.
- S38 W. Zhao, L. Wei, Q. Fu and X. Guo, J. Power Sources, 2019, 422, 73–83.
- S39 H. Li, X. Li, J. Liang and Y. Chen, *Adv. Energy Mater.*, 2019, **9**, 1–13.
- S40 Z. Tian, X. Tong, G. Sheng, Y. Shao, L. Yu, V. Tung, J. Sun, R. B. Kaner and Z. Liu, Nat. Commun., 2019, 10, 1–11.
- S41 H. Li, S. Liu, X. Li, Z. S. Wu and J. Liang, *Mater. Chem. Front.*, 2019, **3**, 626–635.
- S42 X. Shi, S. Pei, F. Zhou, W. Ren, H. M. Cheng, Z. S. Wu and X. Bao, *Energy Environ. Sci.*, 2019, **12**, 1534–1541.
- S43 Y. Wang, Y. Z. Zhang, Y. Q. Gao, G. Sheng and J. E. ten Elshof, *Nano Energy*, 2020, **68**, 104306.
- S44 C. W. Wu, B. Unnikrishnan, I. W. P. Chen, S. G. Harroun, H. T. Chang and C. C. Huang, *Energy Storage Mater.*, 2020, **25**, 563–571.
- S45 S. Liu, J. Xie, H. Li, Y. Wang, H. Y. Yang, T. Zhu, S. Zhang, G. Cao and X. Zhao, J. Mater. Chem. A, 2014, 2, 18125– 18131.
- S46 J. M. Munuera, J. I. Paredes, M. Enterría, S. Villar-Rodil, A. G. Kelly, Y. Nalawade, J. N. Coleman, T. Rojo, N. Ortiz-Vitoriano, A. Martínez-Alonso and J. M. D. Tascón, *ACS Appl. Mater. Interfaces*, 2020, **12**, 494–506.
- S47 W. He, R. Ma and D. J. Kang, *Carbon N. Y.*, 2020, **161**, 117–122.
- S48 B. Li, X. Liang, G. Li, F. Shao, T. Xia, S. Xu, N. Hu, Y. Su, Z. Yang and Y. Zhang, ACS Appl. Mater. Interfaces, 2020, **12**, 39444–39454.
- S49 W. Zhang, R. Li, H. Zheng, J. Bao, Y. Tang and K. Zhou, Adv. Funct. Mater., 2021, 31, 1–9.
- S50 Y. Brauniger, S. Lochmann, J. Grothe, M. Hantusch and S. Kaskel, ACS Appl. Energy Mater., 2021, 4, 1560–1567.
- S51 J. Diao, J. Yuan, A. Ding, J. Zheng and Z. Lu, *Macromol. Mater. Eng.*, 2018, 303.
- S52 Y. Wang, Y. Shi, C. X. Zhao, J. I. Wong, X. W. Sun and H. Y. Yang, *Nanotechnology*, DOI:10.1088/0957-4484/25/9/094010.
- S53 B. Xie, C. Yang, Z. Zhang, P. Zou, Z. Lin, G. Shi, Q. Yang, F. Kang and C. P. Wong, ACS Nano, 2015, 9, 5636–5645.
- S. Wang, N. Liu, J. Tao, C. Yang, W. Liu, Y. Shi, Y. Wang, J. Su, L. Li and Y. Gao, J. Mater. Chem. A, 2015, 3, 2407–2413.
- S55 H. Pang, Y. Zhang, W. Y. Lai, Z. Hu and W. Huang, *Nano Energy*, 2015, **15**, 303–312.
- S56 G. Sun, J. An, C. K. Chua, H. Pang, J. Zhang and P. Chen, *Electrochem. commun.*, 2015, **51**, 33–36.
- S57 L. Li, E. B. Secor, K. S. Chen, J. Zhu, X. Liu, T. Z. Gao, J. W. T. Seo, Y. Zhao and M. C. Hersam, Adv. Energy Mater., 2016, 6, 1–8.
- S58 J. Jiang and A. Kucernak, *Electrochim. Acta*, 2002, **47**, 2381–2386.
- S59 K. Nam and K. Kim, J. Electrochem. Soc., 2006, **153**, 8–15.
- S60 C. Hu, Y. Wu and K. Chang, Chem. Mater., 2008, 20, 2890–2894.

- S61 D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, S. M. Pawar, V. J. Fulari and C. D. Lokhande, J. Alloys Compd., 2009, 484, 218–221.
- S62 H. Jiang, T. Zhao, C. Yan, J. Ma and C. Li, *Nanoscale*, 2010, **2**, 2195.
- S63 D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, V. J. Fulari and C. D. Lokhande, J. Alloys Compd., 2010, 497, 166–170.
- S64 D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, S. M. Pawar and C. D. Lokhande, *Appl. Surf. Sci.*, 2010, **256**, 4411–4416.
- S65 M. Fang, X. Tan, M. Liu, S. Kang, X. Hu and L. Zhang, *CrystEngComm*, 2011, 13, 4915.
- S66 D. P. Dubal and R. Holze, *J. Power Sources*, 2013, **238**, 274–282.
- S67 Y. Li and X.-M. Li, *RSC Adv.*, 2013, **3**, 2398.
- S68 L. Wang, L. Chen, Y. Li, H. Ji and G. Yang, *Powder Technol.*, 2013, 235, 76–81.
- S69 J. Liu, Y. H. Ng, M. B. Okatan, R. Amal, K. A. Bogle and V. Nagarajan, *Electrochim. Acta*, 2014, **130**, 810–817.
- S70 J. Bhagwan, A. Sahoo, K. Lal and Y. Sharma, *Electrochim. Acta*, 2015, **174**, 992–1001.
- S71 D. P. Shaika, P. Rosaiah and O. M. Hussain, J. Adv. Chem., 2015, **12**, 3919–3933.
- 572 B. Gnana Sundara Raj, A. M. Asiri, J. J. Wu and S. Anandan, J. Alloys Compd., 2015, 636, 234–240.
- 573 J. Feng, S. Ye, X. Lu, Y. Tong and G. Li, ACS Appl. Mater. Interfaces, 2015, 7, 11444–11451.
- S74 Y. Luo, T. Yang, Z. Li, B. Xiao and M. Zhang, *Mater. Lett.*, 2016, **178**, 171–174.
- S75 A. A. Yadav, S. N. Jadhav, D. M. Chougule, P. D. Patil, U. J. Chavan and Y. D. Kolekar, *Electrochim. Acta*, 2016, 206, 134–142.
- S76 X. Li, Z. Song, Y. Zhao, Y. Wang, X. Zhao, M. Liang, W.-G. Chu, P. Jiang and Y. Liu, J. Colloid Interface Sci., 2016, 483, 17–25.
- S77 D. P. Shaik, P. Rosaiah and O. M. Hussain, *Mater. Today Proc.*, 2016, **3**, 64–73.
- S78 R. A.V. and R. R. M.S., *Appl. Surf. Sci.*, 2017, **403**, 601–611.
- S79 D. P. M. D. Shaik, P. Rosaiah, K. S. Ganesh, Y. Qiu and O. M. Hussain, *Mater. Sci. Semicond. Process.*, 2018, 84, 83–90.
- S80 V. Nulu, Int. J. Electrochem. Sci., 2018, 13, 8313–8321.
- S81 R. Tholkappiyan, A. N. Naveen, K. Vishista and F. Hamed, J. Taibah Univ. Sci., 2018, 12, 669–677.