Cation vacancy activating surface neighboring sites for efficient CO₂ photoreduction on Bi₄Ti₃O₁₂ nanosheets

Lizhen Liu^a, Jingcong Hu^b, Ben Lei^c, Hongwei Huang^{a,*} and Yue Lu^{b,*}

^aBeijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, P. R. China

E-mail: <u>hhw@cugb.edu.cn</u>

^bBeijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.

E-mail: luyue@bjut.edu.cn

^cResearch Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.

Figure S1. Schematic illustration of CO_2 photoreduction reactor.

Figure S2. XRD patterns of BTO and $BT_{V22}O$.

Figure S3. SEM images of (a) BTO and (b) $BT_{V22}O$.

Figure S4. SEM images with different magnifications of (a, b) BTO and (c, d) $BT_{V22}O$.

Figure S5. TEM images with different magnifications of (a, b) BTO and (c, d) $BT_{V22}O$.

Figure S6. XPS spectra of BTO and $BT_{V22}O$.

Figure S7. XPS spectra of Bi 4f of BTO and $BT_{V22}O$.

Figure S8. DRS spectra of BTO and $BT_{V22}O$.

Figure S9. Bandgap of BTO and $\mathrm{BT}_{\mathrm{V22}}\mathrm{O}.$

Figure S10. Mott-Schottky plots of (a) BTO and (b) $BT_{V22}O$.

Figure S11. (a-c) Time-dependence CO production of $BT_{VXY}O$ (X=1, 2, 3; Y=1, 2, 3, 4).

Figure S12. XRD patterns of $\mathrm{BT}_{\mathrm{V22}}\mathrm{O}$ before and after photoreduction reaction.

Figure S13. PL spectra of BTO and $BT_{V22}O$.

Treating time	0.1 M	0.5 M	1.0 M
15 min	1.08	1.82	3.47
30 min	4.38	7.20	10.01
60 min	4.63	9.84	10.34
90 min	10.01	15.55	15.88

Table S1. The concentrations (wt%) of Ti vacancy. (0.1, 0.5 and 1 M corresponding to the NaOH concentrations; 15, 30, 60 and 90 min corresponding to the treating time)

Photocatalyst	Light sources	Photoactivity	Ref.
BT _{v22} O	300W Xe lamp	CO: 15.17 µmol @ g ⁻¹ @ h ⁻¹	This work
${\rm Bi}_4{\rm Ti}_3{\rm O}_{12}$ hollow-spheres	300W Xe lamp	CO: 13.1 μ mol $\mathbf{\Phi}$ g ⁻¹ $\mathbf{\Phi}$ h ⁻¹	[1]
Bi ₂ O ₂ (OH)(NO ₃) with Br grafting	300W Xe lamp	CO: 8.12 μ mol $\mathbf{\Phi}$ g ⁻¹ $\mathbf{\Phi}$ h ⁻¹	[2]
BiVO ₄ /Bi ₄ Ti ₃ O ₁₂ heterojunction	300W Xe lamp	CO: 13.29 μ mol $\mathbf{\Phi}$ g ⁻¹ $\mathbf{\Phi}$ h ⁻¹	[3]
Hollow-hierarchical Bi_2WO_6 nanosheets	300 W Xe lamp	CH4: 2.6 μ mol $@g^{-1}@h^{-1}$	[4]
Bi ₂ MoO ₆	300W Xe lamp	CO: 14.38 μmol @ g ⁻¹ @ h ⁻¹	[5]
BiOI flowerlike hierarchical structures	300W Xe lamp	$CH_4: 0.40 \ \mu mol \mathbf{\Phi}g^{-1} \mathbf{\Phi}h^{-1}$	[6]
g-C ₃ N ₄ /BiOCl heterostructures with OVs	300W Xe lamp	CO: 4.73 μ mol $\mathbf{\Phi}$ g ⁻¹ $\mathbf{\Phi}$ h ⁻¹	[7]

Table S2. Comparison of the CO_2 photoreduction activity of BTO with the some selected Bi-based catalysts reported in the references.

References

[1] Y.Q. Wang, X.C. Zhang, C.M. Zhang, R. Li, Y.F. Wang, C.M. Fan, Novel $Bi_4Ti_3O_{12}$ hollowspheres with highly-efficient CO_2 photoreduction activity, Inorganic Chemistry Communications, 116 (2020) 107931.

[2] L. Hao, L. Kang, H.W. Huang, L.Q. Ye, K.L. Han, S.Q. Yang, H.J. Yu, M. Batmunkh, Y.H. Zhang,
T.Y. Ma, Surface-halogenation-induced atomic-site activation and local charge separation for superb
CO₂ photoreduction, Advanced Materials, 31 (2019) 1900546.

[3] X.Y. Wang, Y.S. Wang, M.C. Gao, J.N. Shen, X.P. Pu, Z.Z. Zhang, H.X. Lin, X.X. Wang, BiVO₄/Bi₄Ti₃O₁₂ heterojunction enabling efficient photocatalytic reduction of CO₂ with H₂O to CH₃OH and CO, Applied Catalysis B-Environmental, 270 (2020) 118876.

[4] L.B. Xiao, R.B. Lin, J. Wang, C. Cui, J.Y. Wang, Z.Q. Li, A novel hollow-hierarchical structured Bi₂WO₆ with enhanced photocatalytic activity for CO₂ photoreduction, Journal of Colloid and Interface Science, 523 (2018) 151-158.

[5] S.G. Li, L.Q. Bai, N. Ji, S.X. Yu, S. Lin, N. Tian, H.W. Huang, Ferroelectric polarization and thinlayered structure synergistically promoting CO₂ photoreduction of Bi₂MoO₆, Journal of Materials Chemistry A, 8 (2020) 9268-9277.

[6] G.J. Zhang, A.T. Su, J.W. Qu, Y. Xu, Synthesis of BiOI flowerlike hierarchical structures toward photocatalytic reduction of CO₂ to CH₄, Materials Research Bulletin, 55 (2014) 43-47.

[7] Y. Chen, F. Wang, Y.H. Cao, F.Y. Zhang, Y.Z. Zou, Z.A. Huang, L.Q. Ye, Y. Zhou, Interfacial oxygen vacancy engineered two-dimensional g-C₃N₄/BiOCl heterostructures with boosted photocatalytic conversion of CO₂, Acs Applied Energy Materials, 3 (2020) 4610-4618.