Supplementary Information

Photocatalytic dehydrogenation of organic hydrogen carrier on Pd-TiO₂(110) surfaces

Jeong Su Kang¹, Ju Yeol Baek¹, Hyuntae Hwang², Hyeon Suk Shin^{2,3}, Chang Won Yoon⁴, Hyung-Joon Shin^{1*}

¹ Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

² School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

³ Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

⁴ Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.

Figure S1. STS measurements of Au nanoparticles on the $TiO_2(110)$ surface. (a) STM image of Au-TiO₂(110) surface near the Au nanoparticles. (b) dI/dV spectra measured at (a). The colours of the dI/dV curves correspond to those applied to distinguish different measurement positions in the STS image.

Figure S2. STM images of Au nanoparticles deposited the $TiO_2(110)$ surface. (a) DACH molecules adsorbed on the Au-TiO₂(110) surface. (b) STM image of the $TiO_2(110)$ surface after 15 min of 365 nm UV irradiation. Dehydrogenated adsorbates with apparent heights below 2 Å are indicated by white arrows. The contrast of the image was adjusted to distinguish the dissociated species from other species.