Electronic Supplementary Information

Bifunctional NiCuO_x photoelectrodes to promote pseudocapacitive charge storage by *in-situ* photocharging

Ting Zhu ^{acd}*, Jun Pan,^b Zhiyu An, ^b Rongjie Zhe,^a Quanhong Ou, ^a and Hong-En Wang ^{acd}*

^a School of Physics and Electronic Information, Yunnan Normal University, 768 Juxian Street, Kunming 650500, Yunnan, China.

^b School of Materials Science and Engineering, Central South University, 932 Lushan Road South, Changsha 410083, Hunan, China.

^c Yunnan Key Laboratory of Optoelectronic Information Technology, School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.

^d Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China.

*Email: zhut0002@ynnu.edu.cn (T. Zhu); hongen.wang@outlook.com (H. E. Wang)

Fig. S1 Calculated work functions (a and b) of NiO (110) and CuO (010), and charge density distribution contour (c) of the NiO-CuO interface.

Fig. S2 EDS results of the sample CC@NiCuO_x.

Fig. S3 SEM images of the CC@CuO_x.

Fig. S4 SEM images of the CC@NiO.

Fig. S6 Valence band curves obtained from the UPS spectra of the CC@NiO (a), $CC@CuO_x$ (b), and $CC@NiCuO_x$ (c) electrodes.

Fig. S7 Comparison of ESR results for the three samples.

Fig. S8 CV curves obtained from various scan rates (a) with a potential window of 0-0.6 V (vs. SCE) and GCCD curves obtained from various current densities (b) of the $CC@NiCuO_x$ electrodes without light irradiation.

Fig. S9 Comparison of CV curves of CC@NiCuO_x electrodes with light on/off conditions performed at specific scan rates of 8 mV s⁻¹ (a), 10 mV s⁻¹ (b), 15 mV s⁻¹ (c), 20 mV s⁻¹ (d), 30 mV s⁻¹ (e), and 50 mV s⁻¹ (f), respectively.

Fig. S10 Comparison of GCCD curves of CC@NiCuO_x electrodes with light on/off conditions performed at specific current densities of 5 mA cm⁻² (a), 8 mA cm⁻² (b), 15 mA cm⁻² (c), 20 mA cm⁻² (d), 30 mA cm⁻² (e), and 50 mA cm⁻² (f), respectively.

Fig. S11 CV curves (a-b) obtained from various scan rates with a potential window of 0-0.6 V (vs. SCE) without (a) and with (b) light irradiation, and GCCD curves (c-d) obtained from various current densities without (c) and with (d) light irradiation of the CC@CuO_x.

Fig. S12 CV curves (a-b) obtained from various scan rates with a potential window of 0-0.6 V (vs. SCE) without (a) and with (b) light irradiation, and GCCD curves (c-d) obtained from various current densities without (c) and with (d) light irradiation of the CC@NiO.

Fig. S13 Comparison of capacitance enhancements calculated at various current densities of the $CC@CuO_x$ with light on and off conditions.

Fig. S14 Comparison of capacitance enhancements calculated at various current densities of the CC@NiO with light on and off conditions.

Photoelectrodes	Specific Capacitance	Stability	References
CC@NiCuO _x	2937 mF cm ⁻² at 5 mA cm ⁻²	~100% after 5000 cycles	This work
TiO ₂ /CNT fibers	$0.6 \text{ mF cm}^{-2} \text{ at } 0.25 \ \mu\text{A}$	/	1
TiO ₂ nanotube arrays	1.1 mF cm ⁻² at 1 mA cm ⁻²	98.8% after 3000 cycles	2
Bi-polar TiO ₂ nanotube arrays	262.5 mF cm ⁻² at 1 mA cm ⁻²	~90% after 5000 cycles	3
TiO ₂ /SNGP/CdS	104.6 mF cm ⁻² at 1 mA cm ⁻²	~85% after 5000 cycles	4
CF/TiO ₂ /MoS ₂ fibers	18 mF cm ⁻² (1740 μF cm ⁻¹) at 0.02 mA	~81% after 1000 cycles	5
PANI/CNT composites	422 mF cm ⁻² at 0.02 mA	~96% after 500 cycles	6
3D porous graphene and polypyrrole	2754 mF cm ⁻² at 0.5 mA cm ⁻²	85.8% after 10000 cycles	7
Indium tin oxide NWs	2.44 mF cm ⁻² at 0.02 mA cm ⁻²	93% after 10000 cycles	8

Table S1. Comparison of the as-prepared CC@NiCuO_x bifunctional materials with other photoelectrodes for supercapacitors.

References

- 1. Angew. Chem. Int. Ed. 2012, 51, 11977-11980.
- 2. Adv. Funct. Mater. 2014, 24, 1840-1846.
- 3. Nano Energy 2018, 46, 168-175.
- 4. Nanoscale Adv. 2020, 2, 2925-2942.
- 5. Adv. Energy Mater. 2017, 7, 3, 1601208.
- 6. J. Mater. Chem A. 2017, 5, 23078-23084.

- 7. J. Mater. Chem. A, 2022, 10, 3382–3392.
- 8. ACS Appl. Mater. Interfaces 2021, 13, 22676–22683.