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Experimental Section

Materials: MAX (Ti3AlC,) powder was purchased from Jilin 11 Technology Co. Ltd.
Hydrochloric acid (HCI), lithium fluoride (LiF), and ethanol were purchased from
Nanjing Chemical Reagent Co. Ltd. CoCl,-6H,0 (99.99% AR, grade), NiCl,-6H,0
(99.99%, AR, grade), multiwalled carbon nanotubes (MWCNTs), selenium (Se) and N,
N-dimethylformamide (DMF) were obtained from Aladdin Reagent. 1,4-
Benzenedicarboxylic acid (1,4-BDC) and triethylamine (TEA) were purchased from
Tianjin Fuchen Chemicals Reagent Factory. All chemicals were used directly without
further purification. The deionized (DI) water was purified using a Milli-Q3 System

(Millipore, France).

Preparation of Ti;C,T,/Ni-Co MOF Nanosheets: Ti;C,T,/Ni-Co MOFs were prepared
by using the method as described in a previous report!. First, 100 mg Ti;C,T, was
dispersed in a solution containing 32 ml DMF, 2 ml ethanol and 2 ml DI water. Next,
0.375 mmol NiCl,-6H,0, 0.375 mmol CoCl,-6H,O and 0.75 mmol 1,4-BDC were
dissolved into the above solution. Subsequently, 0.8 ml TEA was quickly injected into
the mixed solution. The solution was stirred and then continuously ultrasonicated for 8
h under sealed conditions. Finally, TizC,Ty/Ni-Co MOFs were collected after
centrifugation, washing and drying at 50 °C for 24 h under vacuum conditions. The Ni-

Co MOF was prepared in the same way without adding Ti;C,Ty.

Preparation of Ti;Cy/(NiCo)yssSe: The Ti;C,/(NiCo), s5Se sample was synthesized via
a gas-phase selenization method. Se powder (0.4 g) in a porcelain boat was placed in
upstream and 0.2 g Ti;C,Ty/Ni-Co MOF was placed downstream of a tube furnace.
Then, the materials in the porcelain boats were reacted at 500 °C for 2 h with a heating
rate of 2 °C min~' under an Ar/H, (9:1) atmosphere. Black Ti3C,/(NiCo)35Se powders
were obtained after naturally cooling down under Ar/H, flow. Similarly, (NiCo),gsSe

composites were prepared by one-pot selenization by using Ni-Co MOF as precursors.



Materials Characterization: X-ray diffraction (XRD, PANALYTICAL) was used to
investigate the crystal structures of the composites from 5° to 80°. The elemental
compositions of the surface of the composites were obtained with an ESCALAB250 X-
ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific). The structure and
morphology of the samples were characterized by transmission electron microscopy
(TEM, JEM-2100F) and the scanning electron microscopy (SEM, Hitachi S-4800). The
elemental mappings of the samples were recorded by energy-dispersive spectroscopy
(EDS). Thermogravimetric analysis (TGA, NETZSCH-Gertebau GmbH, Germany)
was used to confirm the contents of each section of the samples in nitrogen flow with a
heating rate of 10 °C min-! from 50 °C to 800 °C. Raman spectra were determined with
a Renishaw inVia spectrometer system with a 532 nm laser. The specific surface of the
samples was measured by the Brunauer—Emmett—Teller method (kubo X1000, China).
UV-Vis spectroscopy measurements were collected from a SHIMADZU UV-3600

spectrometer.

Visualized Adsorption of Lithium Polysulfides: A 20 mM Li,S¢ solution was prepared
by dissolving Li,S (purity>99.9%, Aladdin) and S (molar ratio of 1:5) into 1,2-
dimethoxyethane (DME) and 1,3-dioxolane (DOL), followed by vigorous stirring at 50

°C for 24 h. Typically, 20 mg of the samples was added to 1.0 mL Li,S¢ solution.

Nucleation Tests of Li»S: 0.5 M Li,Sg solution was homemade by stirring Li,S and S
(molar ratio of 1:7) in tetraethylene glycol solvent for 24 h. Ti3;C,/(NiCo)gs5Se, Ti3C,
and (NiCo), gsSe were dispersed in ethanol, dropped onto carbon paper (CP) disks with
a diameter of 12 mm and dried at 50 °C for 24 h. The modified CP disks with a loading
of 1 mg cm2, lithium foil and Celgard 2500 membrane were used as the cathode, anode
and separator to assemble coin cells, respectively. Then, 20 pL of 1.0 M LiTFSI
electrolyte was added to the anode side, and 20 pL Li,Sg solution was added to the
cathode side. The cell was galvanostatically discharged to 2.06 V at 0.112 mA, and then
discharged potentiostatically at 2.02 V for 20000 seconds. The precipitation capacity

of Li,S can be calculated through Faraday’s Law.



Dissolution Tests of Li,S: Except for the catalyst electrode, the cells for the Li,S
dissolution tests were identical to those in the measurement of Li,S nucleation. The
cells were first galvanostatically discharged to 1.7 V at 0.10 mA and then discharged
galvanostatically to 1.7 V at 0.01 mA for fully converting LiPS to solid Li,S. Finally,
the cells were charged potentiostatically at 2.35 V until 30000 s for the sufficient

dissolution of Li,S.

Assembly of Li,Ss Symmetric Cells: Symmetric cells were assembled with two
identical electrodes of Ti3C,/(NiCo)y g5Se, Ti3C, and (NiCo), gsSe loaded onto CP disks.
0.2 M Li,S4 solution (in DME/DOL) solution containing 1.0 M LiTFSI and 0.5 M
LiNO; was used as the electrolyte. Cyclic voltammetry (CV) tests were carried out at
scan rates from 0.5 to 10 mV s! between -0.8 V and 0.8 V on a CHI660D
electrochemical workstation. The symmetric cell with Ti;C,/(NiCo),gsSe electrodes

without Li,S¢ was assembled and tested as a control experiment.

Preparation of Ti;Cy(NiCo)yssSe@PP Separators: The modified commercial
polypropylene celgard (PP) separator was obtained by a typical doctor-blade coating
method. The as-synthesized Ti;C,/(NiCo)ssSe, MWCNTs and PVDF with a weight
ratio of 8:1:1 using NMP as the solvent were mixed, and then coated onto PP. The
obtained Ti3C,/(NiCo)( ssSe@PP separator was dried under vacuum at 50 °C for 24 h
and cut into 16 mm circular disks for direct use. The Ti;C,@PP or (NiCo), gsSe@PP
separator was prepared through similar procedures except Tiz;C,/(NiCo)ygsSe was

replaced by Ti3C, or (NiCo), g5Se.

Preparation of HPGC/S: The HPGC?/S composites were prepared using a
conventional melt-diffusion method. In a typical procedure, HPGC and S were mixed
with an appropriate mass ratio of 8:2 and then heated at 155 °C for 16 h. The product

was collected after cooling to room temperature to generate the HPGC/S composite.



Electrochemical Tests: A homogeneous slurry was prepared by mixing HPGC/S,
polyvinylidene fluoride (PVDF, 5%) and acetylene black in a weight ratio of 7:2:1, and
then the slurry was cast on Al foil and dried at 60 °C for 24 h in a vacuum oven to
obtain the electrode film. Subsequently, the disks with a diameter of 10 mm were
obtained by cutting the electrode film, and the loading of active materials on each disk
was approximately 1.5 mg cm (N/P ratio is 16.7). And for the high loading test, the
sulfur loading is 6.4 mg cm (N/P ratio is 3.9). The electrochemical tests were carried
out by using CR2032-type coin cells that were assembled in an Ar-filled glove box.
The anode, separator, and electrolyte were commercial Li metal (15.6 mm in diameter),
modified Celgard 2500 and the solution by adding 1 M lithium
bis(trifluoromethanesulfonyl) imide (LiTFSI) and 0.5 M LiNO3 in DOL/DME (1:1 by
volume) solvents, respectively. The electrolyte/sulfur (E/S) was maintained at ~20 pL
mg! per cell. CV tests were carried out at scan rates of 0.1 mV s! between 1.7 V and
2.8 V on a CHI660D electrochemical workstation, and electrochemical impedance
spectroscopy (EIS) was performed using an Autolab electrochemical workstation over
a frequency range of 0.01 Hz-10 kHz. The galvanostatic charge-discharge profiles were

obtained using a Land battery tester with a voltage from 1.7 to 2.8 V vs Li"/Li.

Calculations for Diffusion Coefficient of Li lons: The coefficient of Li* diffusion can
be estimated by the Randles-Sevcik equation:

Ip=(2.69 *10%) n¥?SD?Cv!”
where I, is the peak current, n is the transferred electrons number, S is the area of the
electrode, D is the Li* diffusion coefficient, C is the concentration change of Li* during
the electrochemical reaction, and v is the CV scan rate. The #n, S, and C are constant,
thus, 7, and v/?have a linear relationship, and D is positively correlated with the slopes

of the curves (I, - v/?).

Computational Methods: We employed the Vienna Ab Simulation Initio Package
(VASP)* 4 to perform all density functional theory (DFT) calculations within the

generalized gradient approximation (GGA) using the PBE’ formulation. We have



chosen the projected augmented wave (PAW) potentials® 7 to describe the ionic cores
and take valence electrons into account using a plane wave basis set with a kinetic
energy cut-off of 400 eV. Partial occupancies of the Kohn—Sham orbitals were allowed
using the Gaussian smearing method and a width of 0.03 eV. The electronic energy was
considered self-consistent when the energy change was smaller than 107 eV. During
structural optimizations, the Brillouin zone was sampled by 3x3x2 k-points
(Monkhorst—Pack) in (NiCo)pgsSe and a 1x1x1 Monkhorst-Pack k-point grid in
Ti5C,/(NiCo)g gsSe. The binding strength Eb of lithium polysulfides on the (NiCo), g5Se
and Ti3C,/(NiCo) 3sSe surfaces was calculated as follows: E, = (Egwp + Eip) = Esubtips
where Egyp+1p, Eip, and Eg, denote the calculated energies of the total adsorption system,
adsorbates, and substrates, respectively. The free energy was calculated using the
equation: G=E+ZPE-TS, where G, E, ZPE and TS are the free energy, total energy from
DFT calculations, zero-point energy and entropic contributions, respectively. Finally,
the free energies (G) of different intermediates are defined as AG=G;-G; (G; is the
energy of intermediates and G; is the total energy of reactants). The kinetic barriers of
Li,S dissociation were located using the climbing-image nudged elastic band (CINEB)

method?.



Supplementary Figures and Tables

Figure S1. a) SEM and d) TEM images of Ti;C,Ty; b) SEM and e) TEM images of
Ti;C,Ty/Ni-Co MOF; ¢) SEM and f) TEM images of Ti3;C,/(NiCo)gsSe; g) SEM and
h) TEM images of (NiCo) gsSe; 1) HRTEM images of (NiCo)g gsSe.
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Figure S2. Fourier transformed crystalline lattice, corresponding to the HRTEM image.
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Figure S3. XRD pattern of Ti;C,/Ni-Co MOF, Ti;C, T, and MAX.
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Figure S4. Raman spectra of Ti;C,/(NiCo), gsSe, Ti3C, and (NiCo) gsSe.
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Figure S5. High-resolution a) C 1s and b) O 1s XPS spectra of Ti3C,/(NiCo) gsSe.
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Figure S6. N, adsorption—desorption isotherm curves and the pore size distribution of

a) Ti3C2 and b) (NiCO)o‘gsse.
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Figure S7. TGA of Ti3C2/(NiCO)0.85SG, Ti3C2 and (NiCO)O.g5se.



Figure S8. The electrolyte contact angle shots of the a) PP and b)
Ti3C2/(NiCO)0.g5SC@PP.
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Figure S9. High-resolution Li 1s XPS spectra of Li,S¢ before and after adsorption.
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Figure S10. High-resolution S 2p XPS spectra of Li,S¢ after adsorption.
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Figure S11. CV profiles at a) different scanning rates (0.5-8 mV S-!) and b) 10 mV s™!

of Ti5;C,/(NiCo)g gsSe symmetrical cells. ¢) EIS curves of symmetric cells.
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Figure S12. Potentiostatic discharge curves of Tiz;C,/(NiCo)gssSe, Ti;C, and
(NiCO)o.g5S€.
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Figure S13. Potentiostatic discharge fitted curves of (NiCo) gsSe and Ti;C,.



Figure S14. SEM images of the precipitation of Li,S on a) Ti;C; and b) (NiCo), g5Se

electrodes.
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Figure S15. Potentiostatic charge fitted curves of a) Ti3C, and b) (NiCo)g gsSe.
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Figure S16. The Tafel plots calculated from the a) A and b) C peaks of Ti;C,@PP,
(NiCO)o.g5SC@PP and T13C2/(N1C0)085S€@PP
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Figure S17. CV curves of the TizC,/(NiCo), 35Se@PP cell.
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Figure S18. CV curves of a) Ti;C,@PP and b) (NiCo), gsSe@PP cells.
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Figure S19. CV curves of a) Ti;C,@PP and b) (NiCo)ygsSe@PP cells at various

temperatures. ¢) Polarization voltage gaps of cathodic peaks C and anodic peaks A.
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Figure S20. TGA curves of HPGC/S.
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Figure S21. Charge—discharge profiles of the a) Ti;C,/(NiCo)g ssSe@PP, b) Ti;C,@PP
and c) (NiCo), gsSe@PP separators.
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Figure S22. Galvanostatic charge—discharge profiles of the Ti;C,@PP and
(NiCo)g 85Se@PP separators with different numbers of cycles at 0.2 C.

Figure S23. SEM images for (a) Ti;C,@PP and (b) (NiCo),s;Se@PP toward the

lithium anode after 200 cycles at 0.2 C.



Figure S24. SEM images of lithium metal anodes after 200 cycles at 0.2 C for (a)
Ti;C,@PP and (b) (NiCo), ssSe@PP.
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Figure S25. Charge—discharge profiles of Ti;C,/(NiCo)o.gsSe@PP.



Figure S26. The optimized adsorption structures of sulfur species on the (NiCo), g5Se

substrate.
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Figure S27. a) XRD pattern and b-c) TEM images of Ti;C,/(NiCo)ggsSe after 100
cyclesat 1 C.



Table S1 BET surface area and total pore volume of Ti;C,/(NiCo),g5Se, (NiCo)ggsSe

and Ting.
Total pore volume
Sample BET surface area (m? g'!)
(em® g7)
Ti;C,/(NiCo)gg55e 91.839 0.138
(NiCo)y ssSe 46.736 0.062
Ti;C, 56.218 0.112

Table S2. EIS results of Ti;C,/(NiCo),gsSe@PP, (NiCo)ygsSe@PP and Ti;C,@PP

before cycling.

Seperator Rs (©2) Rcet (Q)
Ti;C,T/Ni-Co MOF@PP 1.6 16.6
Ti;C, Ty@PP 1.9 31.2

PP 2.2 29.1




Table S3. Comparison of electrochemical performance of our work with various

works.
Sulfur Sulfur Current Capacity
content loadin densit decay per
(Wt %) (mg cmi) (©) * number cycley (F‘:A))
This work 80 1.5 1 2000 0.03
Co-Bi/rGO? 70 1.1 1 500 0.051
S/V-N-C!0 75 1.5 1 1000 0.056
CoSe,/hNCTs/S!! 80 1.3 1 1000 0.069
CoZn-S'? 70 1 1 1800 0.04
S@Co-Fe-P!3 71 1 1 500 0.043
P-Mog9Coq1S,-2' 80 2 1 600 0.046
FPGS" 80 1 0.5 500 0.05
CoNiP/rGO/S'6 60 1.5 1 600 0.08
S@CoNi MOF!7 86.5 1.5 1 500 0.036
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