Supporting information

Biobased catalyst-free Covalent Adaptable Networks based on CF_3 -activated synergistic aza-Michael exchange and transesterification

Dimitri Berne^a, Baptiste Quienne^a, Sylvain Caillol^a, Eric Leclerc^{a,*}, Vincent Ladmiral^{a,*}

^a ICGM, Université Montpellier, CNRS, ENSCM, Montpellier, France

Figure S1: ¹ H (top), ¹³ C (mid) and ¹⁹ F (bot) NMR spectra of BMA-MAF-TBE in CDCl ₃ at 25 °C2
Figure S2. ¹ H (top) and ¹³ C (bot) NMR spectra of BMA-A-TBE in CDCl ₃ at 25 °C2
Figure S3: ¹ H (top) and ¹³ C (bot) NMR spectra of BMA-MAF-Me in CDCl ₃ at 25 °C
Figure S4: ¹ H (top) and ¹³ C (bot)) NMR spectra of BMA-A-Me in CDCl ₃ at 25 °C
Figure S5 : ^1H (top) and ^{13}C (bot) NMR spectra of BD- β -HA in MeOD at 25 °C4
Figure S6: ¹ H (top), ¹³ C (mid) and ¹⁹ F (bot) NMR spectra of Pripol-(MAF) ₂ in CDCl ₃ at 25 °C5
Figure S7: ¹ H (top) and ¹³ C (bot) NMR spectra of Pripol-A ₂ in CDCl ₃ at 25 °C5
Figure S8: DSC analyses of initial BAE materials (A), BAE-F-OH (B), BAE-F (C) and BAE-OH over 3
reshaping cycles (D)6
Figure S9: TGA analyses of initial BAE materials (A), BAE-F-OH (B), BAE-F (C) and BAE-OH over 3
reshaping cycles (D)6
Figure S10. Non-Normalized stress-relaxation curves at different temperatures for a 1 % strain A) for
BAE-F-OH, B) for BAE-F and C) for BAE-OH7
Figure S11: Creep and recovery data for BAEs at 80 °C for an applied stress of 2 kPa7
Figure S12: FTIR spectra of initial BAE materials (A), BAE-F-OH (B), BAE-F (C) and BAE-OH over 3
reshaping cycles (D)8
Table S1: Tg,Td5%, DMA data, swelling index and gel content values of BAE materials over the
reshaping cycles
Figure S13: DMA analyses of BAE-F-OH (A), BAE-F (B) and BAE-OH (C) over three reshaping cycles9

Figure S1: ¹H (top), ¹³C (mid) and ¹⁹F (bot) NMR spectra of BMA-MAF-TBE in CDCl₃ at 25 °C.

Figure S2. ^1H (top) and ^{13}C (bot) NMR spectra of BMA-A-TBE in CDCl3 at 25 °C.

Figure S3: ¹H (top) and ¹³C (bot) NMR spectra of BMA-MAF-Me in CDCl₃ at 25 °C.

Figure S4: ¹H (top) and ¹³C (bot)) NMR spectra of BMA-A-Me in CDCl₃ at 25 °C.

Figure S5 : ¹H (top) and ¹³C (bot) NMR spectra of BD- β -HA in MeOD at 25 °C.

Figure S6: ¹H (top), ¹³C (mid) and ¹⁹F (bot) NMR spectra of Pripol-(MAF)₂ in $CDCI_3$ at 25 °C.

Figure S7: ¹H (top) and ¹³C (bot) NMR spectra of Pripol-A₂ in CDCl₃ at 25 °C.

Figure S8: DSC analyses of initial BAE materials (A), BAE-F-OH (B), BAE-F (C) and BAE-OH over 3 reshaping cycles (D).

Figure S9: TGA analyses of initial BAE materials (A), BAE-F-OH (B), BAE-F (C) and BAE-OH over 3 reshaping cycles (D).

Figure S10. Non-Normalized stress-relaxation curves at different temperatures for a 1 % strain A) for BAE-F-OH, B) for BAE-F and C) for BAE-OH.

Figure S11: Creep and recovery data for BAEs at 80 °C for an applied stress of 2 kPa.

Figure S12: FTIR spectra of initial BAE materials (A), BAE-F-OH (B), BAE-F (C) and BAE-OH over 3 reshaping cycles (D).

Table S1: T_{g} , $T_{d5\%}$, DMA data, swelling index and gel content values of BAE materials over the reshaping cycles.

	BAE-F-OH						
	T _{d5%} (°C)	T _g (°C)	Τ _α (°C)	E' _{glassy} (GPa) ^a	E' _{rubbery} (MPa) ^b	SI (%)	GC (%)
Initial	252	-38	-23	1.8	3.4	307	86
Reshape 1	234	-39	-30	0.9	1.5	288	83
Reshape 2	225	-39	-25	0.8	2.1	312	84
Reshape 3	252	-40	-30	2.0	2.6	315	83

	BAE-F						
	T _{d5%} (°C)	T _g (°C)	T _α (°C)	E' _{glassy} (GPa) ^a	E' _{rubbery} (MPa) ^b	SI (%)	GC (%)
Initial	255	-22	-25	1.5	2.9	251	91
Reshape 1	260	-23	-25	1.5	2.3	199	89
Reshape 2	260	-26	-24	0.9	2.3	197	90
Reshape 3	277	-27	-25	1.5	2.5	202	87

	BAE-OH						
	T _{d5%} (°C)	T _g (°C)	T _α (°C)	E' _{glassy} (GPa) ^a	E' _{rubbery} (MPa) ^b	SI (%)	GC (%)
Initial	297	-38	-33	1.9	2.1	288	83
Reshape 1	295	-38	-21	1.2	1.9	310	77
Reshape 2	297	-41	-28	1.3	1.8	317	72
Reshape 3	299	-41	-25	1.2	1.2	341	68

^a Determined at T_{α} – 50 °C

^b Determined at T_{α} + 50 °C

Figure S13: DMA analyses of BAE-F-OH (A), BAE-F (B) and BAE-OH (C) over three reshaping cycles.