Supporting Information

A synergistic anti-corrosion system based on durable superhydrophobic F-SiO₂/epoxy coatings and selfpowered cathodic protection

Xiukun Liu^{a, †}, Xu Xu^{a, †}, Fangjia Zhang^b, Xiangchao Ge^b, Haifeng Ji^b, Yuqi Li^{a,*}, Shaorong Lu^a, and Zhen Wen^{b,*}

^a Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China.

^b Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

[†] These authors contributed equally to this work.

* Corresponding Authors: liyuqi@glut.edu.cn (Y. Li); wenzhen2011@suda.edu.cn (Z. Wen).

Fig. S1 Contact angle of FE-8 coating under different solutions

Fig. S2 Water flow testing: (a) for aluminum with FE-8 coating; (b) for uncoated aluminum.

Fig. S3 Optical photos of FE-8 after the cross-cut tape test

Fig. S4 Charge accumulation process of FE-TENG.

Fig. S5 I_{sc} of FE-TENG after contamination by different solutions.

Fig. S6 OCP variation with and without FE-TENG protection of the (a) 304SS and (b) FE-8 coated 304SS.

Fig. S7 Tafel potential polarization curves of Bare 304 SS without TENG protection, Bare 304 SS with TENG protection, FE-8 coated 304 SS without TENG protection and FE-8 coated 304 SS with TENG protection.

Samples	E _{corr} /v	I _{corr} / A·cm ⁻²	$-\beta_c/mV \cdot dec^{-1}$	$\beta_a/mV \cdot dec^{-1}$
Bare aluminum sheet without FE-TENG	-0.80	2.76×10 ⁻⁷	411	29
Bare aluminum sheet with FE-TENG	-0.88	4.47×10 ⁻⁸	41	49
FE-8 coated aluminum sheet without FE-TENG	-0.63	2.37×10^{-10}	186	136
FE-8 coated aluminum sheet with FE-TENG	-1.34	2.51×10 ⁻⁹	64	79

Table S1. Electrochemical parameters obtained from the Tafel polarization curve of the aluminum sheet.

Samples	R_s ($\Omega \cdot cm^{-2}$)	R_{ct} ($\Omega \cdot cm^{-2}$)	$\begin{array}{c} Q_{dl} \\ (\Omega \cdot s^n \cdot cm^{-2}) \end{array}$	n	C _{dl} (µF∙cm ⁻²)	R_{coat} ($\Omega \cdot cm^{-2}$)	$\begin{array}{c} Q_{coa2t}\\ (\Omega\cdot s^n\cdot cm^{-2})\end{array}$
Bare aluminum sheet without FE-TENG	17.62	7.11×10 ⁴	5.98×10 ⁻⁶	0.89	1.92×10 ⁻⁶		
Bare aluminum sheet with FE-TENG	15.35	4.32×10 ⁴	8.55×10 ⁻⁶	0.85	1.76×10 ⁻⁶		
FE-8 coated aluminum sheet without FE-TENG	0.01	2.52×10 ⁸	2.66×10 ⁻⁹	0.83	1.81×10 ⁻¹¹	10807	2.66×10 ⁻¹⁰

Table S2. Results of fitting EIS data for uncoated aluminum without FE-TENG,uncoated aluminum with FE-TENG, and superhydrophobic coating without FE-
TENG in 3.5 wt% NaCl solution by immersion.

EIS: Electrochemical impedance spectroscopy

Triboelectric	Isc	V_{oc}	Q _{sc}	OCP Change value		Ref.
materials	(µA)	(V)	(nC)	(mV)	Energy source	
Al/Kapton	0.2	/	13.5	70	Water wave	[S1]
Water/MAO-F	6	/	300	670	Water wave/8 Hz	[S2]
Paper/PVDF	30	1000	/	450	Mechanical energy/2 Hz	[S3]
PVA/PTFE	29.72	405.3	/	590	Wind	[S4]
PPy NWs/PVDF	33.7	351	/	260	Mechanical energy/8 Hz	[85]
FE Coatings/	4.12	114.4	32.74	796	Mechanical energy/1 Hz	This see als
Silicone Rubber	0.4	19	7.5	287	Water wave	1 ms work

Table S3. Materials and properties of triboelectric nanogenerators in self-powered

anti-corrosion systems.

Reference:

- S1. W. Guo, X. Li, M. Chen, L. Xu, L. Dong, X. Cao, W. Tang, J. Zhu, C. Lin, C. Pan, Z.L. Wang, *Adv. Funct. Mater.* 24 (2014) 6691-6699.
- S2. C. Xu, Y. Liu, Y. Liu, Y. Zheng, Y. Feng, B. Wang, X. Kong, X. Zhang, D. Wang, *Appl. Mater. Today* 20 (2020) 100645.
- S3. Y. Feng, Y. Zheng, Z.U. Rahman, D. Wang, F. Zhou, W. Liu, J. Mater. Chem. A 4(46) (2016) 18022-18030.
- S4. W. Sun, N. Wang, J. Li, S. Xu, L. Song, Y. Liu, D. Wang, *Electrochim. Acta* 391 (2021) 138994-139004.
- S5. J. Baux, N. Caussé, J. Esvan, S. Delaunay, J. Tireau, M. Roy, D. You, N. Pébère, *Electrochim. Acta* 283 (2018) 699-707.