Electronic Supplementary Information

Effects of Cationic Size on Thermoelectricity of PEDOT:PSS/Ionic Liquids Hybrid Films for Wearable Thermoelectric Generator Application

Kexing Jiang,^a‡ Shao-Huan Hong,^a‡ Shih-Huang Tung^b and Cheng-Liang Liu^{*c}

- ^{a.} Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan.
- ^{b.} Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
- ^{c.} Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan. E-mail: liucl@ntu.edu.tw
- **‡** These Authors Contributed equally to this work.

Characterization

The thicknesses of the thermoelectric films were measured by Alpha-Step® D-300 stylus profiler. The ultraviolet-visible-near-infrared (UV-Vis-NIR) absorption spectra were measured using a Hitachi U4100 spectrophotometer The Raman spectra of the films were obtained using a Raman spectroscopy (Horiba Jobin-Yvon LabRam HR800) with a Nd:YAG laser with the excitation wavelength of 532 nm. A surface chemical analysis instrument (VG Scientific ESCALAB 250) was employed to measure the X-ray photoelectron spectroscopy (XPS) spectra. Synchrotron-based GIXRD was performed at the B13A1 beamlines at National Synchrotron Radiation Research Center (NSRRC, Taiwan). Surface morphologies of the PEDOT:PSS films were determined by an tapping mode atomic force microscopy (Hitachi 5100N) under ambient condition. The work function was determined from the photoelectron emission yield measured by a Photon Electron Spectroscopy in Air (PESA) system (RIKEN KEIKI AC-2) operating at room temperature. The carrier concentration and mobility measurements were performed using a Hall measurement system (Ecopia HMS-3000) at room temperature.

	D	Conductivity	Conductivity Seebeck coefficient		
Ionic liquid	Process	[S cm ⁻¹]	[µV K-1]	[µW m ⁻¹ K ⁻²]	Ref.
Li TFSI	Solution mixing	~1000	19-35	75	1
MMIM BF ₄	Solution mixing	330.8	35.7	39.8	This work
MMIM TFSI	Solution mixing	520	17	15	2
EMIM BF ₄	Solution mixing	497.2	32.7	53.1	This work
EMIM TFSI	Solution mixing	810	12	11	2
EMIM DCA	Solution mixing	275	35	33	3
EMIM DCA	Solution mixing	913	47	167	4
EMIM DCI	Solution mixing	538	29	42	3
EMIM TCM	Solution mixing	1000	30	90	5
EMIM TCM	Solution mixing	1163	38.8	175	6
EMIM TCM	Solution mixing	~140	~22		7
EMIM TCB	Solution mixing	~85	~23		7
EMIM TCB	Solution mixing	~600	18	28	4

EMIM ES	Solution mixing	~32	~25		7
BMIM BF ₄	Solution mixing	566.3	31.6	56.7	This work
BMIM BF ₄	Solution mixing	174.87	30.1	8.4	8
BMIM BF4	Solution mixing	~570	25	29	4
BMIM Br	Solution mixing	123.07	30.6	9.9	8
HMIM BF ₄	Solution mixing	729.0	28.7	60.1	This work
MMIM BF ₄	Post treatment	1447.3	24.4	86.2	This work
BMIM TFSI	Post treatment	641	61.1	239.2	9
BMIM OTf	Post treatment	1260±61	34.8±1.8	152±11.2	10
BMIM BF4	Post treatment	1654.2	19.6	63.5	This work
BMIM BF4	Post treatment	1188±45	33.9±1.9	137±12.5	10
EMIM TCM	Post treatment	~1100	31.9	117	5
EMIM TFSI	Post treatment	380	42	40	11
EMIM DCA	Post treatment	450	42	85	4
EMIM DCA	Post treatment	568.2	38.4	83.8	12
EMIM DCA	Post treatment	3400	43		13
EMIM DCA	Post treatment	~1500-1600	~65	754	14
EMIM TCB	Post treatment	330	25	25	4

EMIM BF ₄	Post treatment	1534.1	21.4	70.3	This work
EMIM BF ₄	Post treatment	480	27	40	4
EMIM BF ₄	Post treatment	~700	~24	38.46	15
HMIM BF ₄	Post treatment	1974.2	19.5	75.1	This work
$[CoCl_2 \cdot 6H_2O]$: $[ChCl]$	Post treatment	1648±56	21.6±0.4	76.8	16

lonic liquid	Viscosity	Density	Molar mass
	[mPa s]	[g cm ⁻³]	[g mol ⁻¹]
MMIM BF ₄	34	1.30	183.95
EMIM BF ₄	60	1.29	197.97
BMIM BF ₄	140	1.26	226.05
HMIM BF ₄	260	1.15	268.10

Table S2 Physical properties of ionic liquids in this study.

Table S3 XPS Results: deconvoluted S 2p peaks of the XPS spectra for spin-coated pristine PEDOT:PSS film and PEDOT:PSS/XMIM BF₄ hybrid films with formamide post treatment.

				Binding	Area	PEDOT to PSS	
	Sample	Chem	ical state	energy	percentage		
				[eV]	[%]	composition ratio	
		PSS	S 2p _{1/2}	169.39	23.67		
		PSS S 2p _{3/2}		168.23	47.30	1:2.44	
	PEDOT:PSS	PEDOT S 2p _{1/2}		165.47	19.35		
		PEDC	PEDOT S 2p _{3/2}		9.68		
	PSS S 2p _{1/2}	168.84	17.94				
PEDOT:PSS	PSS S 2p _{3/2}	167.68	35.85				
/MMIM BF ₄	PEDOT S 2p _{1/2}	165.41	15.41	1:1.16			
	PEDOT S 2p _{3/2}	164.25	30.80				
	PSS S 2p _{1/2}	169.01	18.40				
PEDOT:PSS	PSS S 2p _{3/2}	167.85	36.77	1:1.23			
	PEDOT S 2p _{1/2}	165.45	14.95				

	PEDOT S 2p _{3/2}	164.29	29.89	
PEDOT:PSS /BMIM BF4	PSS S 2p _{1/2}	168.95	18.60	
	PSS S 2p _{3/2}	167.79	37.18	1.1 26
	PEDOT S 2p _{1/2}	165.49	14.75	1.1.20
	PEDOT S 2p _{3/2}	164.33	29.48	
	PSS S 2p _{1/2}	169.16	19.14	
PEDOT:PSS /HMIM BF4	PSS S 2p _{3/2}	168.00	38.26	1.1 25
	PEDOT S 2p _{1/2}	165.51	14.21	1.1.35
	PEDOT S 2p _{3/2}	164.35	28.39	

Traatmont	Conductivity	Seebeck coefficient	Power factor	Leg	Output voltage	Output power	Dof
rreatment	[S cm ⁻¹]	[μV Κ ⁻¹]	[µW m ⁻¹ K ⁻²]	numbers	[mV]	[nW]	Kel.
PEDOT:PSS/MMIM BF ₄	1447.3	24.4	86.2	7	2.4	16.5 (µW cm ⁻²)	This work
Doping with BSA and DMSO/HZ	1119	42.6	203.1	16	4.6		17
PEDOT:PSS (Clevios PJET 700) ink printing	17±1.5	600±70	17.12±4.6	4/4	29.36	0.419	18
Spray Printing and PS treatment	~600	~15		74	9.21	2.23	19
Sulfuric acid treatment	2500	20.6	107	5	2		20
Formamide, Sulfuric acid and NaBH₄ treatment	1786	28.1	141	14	2.9		21
Polymerized PEDOT:OTf	2215±665	18.0	105	312		16.5±0.5 (nW K ⁻² m ⁻²)	22
Treated with EG/NaHCO $_3$	770	48	183	4/4	6.98	98 (μW cm ⁻²)	23
PEDOT:PSS/WPU fibers	730	~19	26.1	5/5		0.311	24
PEDOT:PSS/WPU/EMIM TCM	~140	~22		10	6.5	~25	7
EG, DMSO and BMIM BF_4 treatment	172.5	14.8	4.77	5/5	20.7	481.2 (μW cm ⁻²)	25

Ag@NC _{Dots} /PEDOT:PSS/PVA	287.4±19	65.55±3	123.5±6	12	15.12	15.59	26
EG-H ₂ SO ₄ treatment	676.59	13.13	9.42		1.7		27
PEDOT:PSS/Te nanorod	122.4	E1 6	E1 /	o	2 5		20
composite	122.4	51.0	51.4	0	2.5		20

Fig. S2 Temperature-dependent (a) electrical conductivity, (b) Seebeck coefficient, and (c) power factor of the spin-coated pristine PEDOT:PSS and PEDOT:PSS/XMIM BF_4 (1%) hybrid films without DMSO post-treatment. It is noted that the PEDOT:PSS mixed with MMIM BF_4 , EMIM BF_4 , BMIM BF_4 , HMIM BF_4 is denoted as w/MMIM BF_4 , w/EMIM BF_4 , w/BMIM BF_4 , w/BMIM BF_4 , w/BMIM BF_4 , respectively.

Fig. S3 Raman spectra of spin-coated pristine PEDOT:PSS films and one with formamide post-

treatment.

Fig. S4 AFM height (left) and phase (right) images of spin-coated (a) pristine PEDOT:PSS films and (b) PEDOT:PSS/MMIM BF_4 , (c) PEDOT:PSS/EMIM BF_4 , (d) PEDOT:PSS/BMIM BF_4 , (e) PEDOT:PSS/HMIM BF_4 hybrid films with formamide post treatment.

Fig. S5 Hall effect measurement of carrier concentration and mobility of spin-coated pristine PEDOT:PSS and PEDOT:PSS/XMIM BF₄ hybrid films with formamide post treatment.

Fig. S6 Photoelectron spectroscopy in air (PESA) measurement of spin-coated (a) pristine PEDOT:PSS films and (b) PEDOT:PSS/MMIM BF₄, (c) PEDOT:PSS/EMIM BF₄, (d) PEDOT:PSS/BMIM BF₄, (e) PEDOT:PSS/HMIM BF₄ hybrid films with formamide post treatment.

Fig. S7 (a) Seebeck coefficient and (b) power factor vs. electrical conductivity for previously reported PEDOT:PSS films post-treated ionic liquids and this work.

Fig. S8 Relative resistance of the flexible thermoelectric generators versus (a) the bending cycles at bending radius of 3 mm (The inset shows photo of assembled thermoelectric generator supported by PET and demonstrates good flexibility) and (b) time under the ambient condition (relative humidity of \sim 40%, room temperature).

Reference

- Q. K. Li, M. J. Deng, S. M. Zhang, D. K. Zhao, Q. L. Jiang, C. F. Guo, Q. Zhou and W. S. Liu, J. Mater. Chem. C, 2019, 7, 4374-4381.
- A. Mazaheripour, S. Majumdar, D. Hanemann-Rawlings, E. M. Thomas, C. McGuiness,
 L. d'Alencon, M. L. Chabinyc and R. A. Segalman, *Chem. Mater.*, 2018, **30**, 4816-4822.
- 3. S. Kee, H. Kim, S. H. K. Paleti, A. El Labban, M. Neophytou, A.-H. Emwas, H. N. Alshareef and D. Baran, *Chem. Mater.*, 2019, **31**, 3519-3526.
- N. Saxena, B. Pretzl, X. Lamprecht, L. Bießmann, D. Yang, N. Li, C. Bilko, S. Bernstorff and
 P. Müller-Buschbaum, ACS Appl. Mater. Interfaces, 2019, 11, 8060-8071.
- 5. Q. Li, Q. Zhou, L. Wen and W. Liu, J. Materiomics, 2020, 6, 119-127.
- 6. X. Li, R. Zou, Z. Liu, J. Mata, B. Storer, Y. Chen, W. Qi, Z. Zhou and P. Zhang, *npj Flex. Electron.*, 2022, **6**, 6.
- N. Kim, S. Lienemann, I. Petsagkourakis, D. A. Mengistie, S. Kee, T. Ederth, V. Gueskine,
 P. Leclere, R. Lazzaroni, X. Crispin and K. Tybrandt, *Nat. Commun.*, 2020, **11**, 1424.
- 8. C. Liu, J. Xu, B. Lu, R. Yue and F. Kong, J. Electron. Mater., 2012, 41, 639-645.
- 9. T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Wang, J. Song, W. S. Chin and J. Xu, Front. Chem., 2020, **7**, 870.
- T. A. Yemata, Y. Zheng, A. K. K. Kyaw, X. Z. Wang, J. Song, W. S. Chin and J. W. Xu, *Mater. Adv.*, 2020, 1, 3233-3242.
- 11. J. Atoyo, M. R. Burton, J. McGettrick and M. J. Carnie, *Polymers*, 2020, **12**, 559.
- 12. M. Z. Du, X. Y. Chen and K. Zhang, ACS Appl. Energy Mater., 2021, 4, 4070-4080.
- 13. H. Cheng and J. Ouyang, *Adv. Energy Mater.*, 2020, **10**, 2001633.
- 14. Z. Fan, D. Du, X. Guan and J. Ouyang, *Nano Energy*, 2018, **51**, 481-488.
- J. J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin,
 M. Hietschold, D. R. T. Zahnd and T. Gessner, *J. Mater. Chem. A*, 2013, 1, 7576-7583.
- 16. Y. N. Lu, A. Y. Wu, C. W. Sha, X. C. Hang and D. J. Young, *Chem Asian J.*, 2021, **16**, 2740-2744.
- C. Wang, K. Sun, J. Fu, R. Chen, M. Li, Z. Zang, X. Liu, B. Li, H. Gong and J. Ouyang, *Adv. Sustainable Syst.*, 2018, **2**, 1800085.

- S. Ferhat, C. Domain, J. Vidal, D. Noël, B. Ratier and B. Lucas, *Sustainable Energy Fuels*, 2018, 2, 199-208.
- S. Hwang, I. Jeong, J. Park, J.-K. Kim, H. Kim, T. Lee, J. Kwak and S. Chung, ACS Appl. Mater. Interfaces, 2020, 12, 26250-26257.
- Z. Li, H. Sun, C.-L. Hsiao, Y. Yao, Y. Xiao, M. Shahi, Y. Jin, A. Cruce, X. Liu, Y. Jiang, W. Meng, F. Qin, T. Ederth, S. Fabiano, W. M. Chen, X. Lu, J. Birch, J. W. Brill, Y. Zhou, X. Crispin and F. Zhang, *Adv. Electron. Mater.*, 2018, *4*, 1700496.
- S. Xu, M. Hong, X.-L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou and Z.-G.
 Chen, *Chem. Mater.*, 2019, **31**, 5238-5244.
- 22. E. Yvenou, M. Sandroni, A. Carella, M. N. Gueye, J. Faure-Vincent, S. Pouget, R. Demadrille and J.-P. Simonato, *Mater. Chem. Front.*, 2020, **4**, 2054-2063.
- 23. I. Paulraj, T.-F. Liang, T.-S. Yang, C.-H. Wang, J.-L. Chen, Y. W. Wang and C.-J. Liu, *ACS Appl. Mater. Interfaces*, 2021, **13**, 42977-42990.
- 24. N. Wen, Z. Fan, S. Yang, Y. Zhao, C. Li, T. Cong, H. Huang, J. Zhang, X. Guan and L. Pan, *Chem. Eng. J.*, 2021, **426**, 130816.
- 25. J. Liu, Y. Jia, Q. Jiang, F. Jiang, C. Li, X. Wang, P. Liu, P. Liu, F. Hu, Y. Du and J. Xu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 44033-44040.
- 26. A. F. Al Naim, S. S. Ibrahim and A. g. El-Shamy, *Polymer*, 2021, **226**, 123792.
- Y. Pan, Y. Song, Q. Jiang, Y. Jia, P. Liu, H. Song and G. Liu, Synth. Met., 2022, 283, 116969.
- 28. H. Song and K. Cai, *Energy*, 2017, **125**, 519-525.