Supplementary Information

Applying the HSAB Design Principle to the 3.5-V-class All-Solid-State Li-ion

Batteries with a Chloride Electrolyte

Naoto Tanibata^{a,*}, Shuta Takimoto^b, Shin Aizu^a, Hayami Takeda^a, Masanobu Nakayama^a

^aDepartment of Advanced Ceramics, Nagoya Institute of Technology, Gokiso, Showa,

Nagoya, Aichi 466-8555, Japan

^bCreative Engineering Program, Nagoya Institute of Technology, Gokiso, Showa,

Nagoya, Aichi 466-8555, Japan

Figure S1. Charge-discharge curve (a) of all-solid-state lithium-ion battery with the mixed electrode containing the LiCoO₂ electrode, LiAlCl₄ electrolyte, and conductive additive Ketjenblack (KB).

Figure S2. Schematic of the all-solid-state battery used in the evaluation.

Table S1. Reaction equations and the corresponding decomposition energies for Li_2ZrCl_6 and $LiFePO_4$ calculated using the Interface Reactions app implemented in the Materials

Project.^{1,2}

Molar Fraction	Reaction Equation (normalized to reflect molar fraction)	Decompositio n Energy [eV/atom]
0.000	$Li_2ZrCl_6 \rightarrow ZrCl_4 + 2 LiCl_6$	0.000
0.750	$0.75 \text{ LiFePO4} + 0.25 \text{ Li}^2 \text{ZrCl}^6 \rightarrow 0.375 \text{ Fe}^2 \text{PCIO4} + 0.125 \text{ Li}^2 \text{Zr}^2 (\text{PO4})^3 + 1.125 \text{ LiCl}^3$	-0.041
1.000	$LiFePO^4 \rightarrow LiFePO^4$	0.000

Table S2. Reaction equations and the corresponding decomposition energies for Li_3ScCl_6 and $LiFePO_4$ calculated using the Interface Reactions app implemented in the MaterialsProject.^{1,2}

Molar Fraction	Reaction Equation (normalized to reflect molar fraction)	Decompositio n Energy [eV/atom]
0.000	$Li3ScCI^6 \to ScCI^3 + 3 LiCI$	-0.012
0.667	0.667 LiFePO4 + 0.333 Li3ScCl6 → 0.333 ScPO4 + 0.333 Fe2PClO4 + 1.667 LiCl	-0.029
0.750	0.75 LiFePO4 + 0.25 Li3ScCl ⁶ → 0.125 Li3Sc2(PO4)3 + 0.375 Fe2PClO4 + 1.125 LiCl	-0.026
1.000	$LiFePO_4 \rightarrow LiFePO_4$	0.000

Table S3. Reaction equations and the corresponding decomposition energies for Li_3InCl_6 and $LiFePO_4$ calculated using the Interface Reactions app implemented in the MaterialsProject.^{1,2}

Molar Fraction	Reaction Equation (normalized to reflect molar fraction)	Decompositio n Energy [eV/atom]
0.000	$Li^{3}InCl^{6} \rightarrow Li^{3}InCl^{6}$	0.000
1.000	$LiFePO_4 \rightarrow LiFePO_4$	0.000

Figure S3. Relationship between the calculated energies of the decomposition reaction of the chloride materials (LiAlCl₄, Li₂ZrCl₆,³ Li₃ScCl₆,⁴ and Li₃InCl₆⁵) with LiFePO₄ and the charge density index (Z/r^2) of the cations (Al³⁺, Zr⁴⁺, Sc³⁺, In³⁺). *Z* is the formal charge of the cation, and *r* is the ionic radius of the Shannon (6-coordination).⁶

References

- W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim and G. Ceder, *Chem. Mater.*, 2016, 28, 266–273.
- 2 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, *APL Mater.*, 2013, 1, 011002.
- H. Kwak, D. Han, J. Lyoo, J. Park, S. Hoo Jung, Y. Han, G. Kwon, H. Kim, S.-T. Hong, K.-W. Nam, Y. Seok Jung, H. Kwak, J. Park, S. H. Jung, Y. Han, Y. S. Jung, H. Kim, D. Han, K. Nam, J. Lyoo, S. Hong and G. Kwon, *Adv. Energy Mater.*, 2021, 11, 2003190.
- L. Zhou, T. T. Zuo, C. Y. Kwok, S. Y. Kim, A. Assoud, Q. Zhang, J. Janek and L.
 F. Nazar, *Nat. Energy*, 2022, 7, 83–93.
- 5 X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T. K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, K. R. Adair and X. Sun, *Energy Environ. Sci.*, 2019, **12**, 2665–2671.
- 6 R. D. Shannon, Acta Crystallogr. Sect. A, 1976, **32**, 751–767.