Electronic Supplementary Information

Constructing all Zero-dimensional CsPbBr₃/CdSe Heterojunction for Highly Efficient Photocatalytic CO₂ Reduction

Guilin Yin,^a Xiaosi Qi,^a Yanli Chen,^a Qiong Peng,^a Xingxing Jang,^b Qinglong Wang,^{*c} Wenhua Zhang,^{*d} Xiu Gong,^{*a}

^aCollege of Physics, & Guizhou Province Key Laboratory for Optoelectronic Technology and Application, Guizhou University, Guiyang 550025, China
^bCollege of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
^cNational & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China
^dYunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650500, China.

*Corresponding author.

E-mail: <u>xgong@gzu.edu.cn; qlwang2021@163.com; wenhuazhang@ynu.edu.cn;</u>

Fig. S1 TEM image of CsPbBr₃ QDs (size: 8.2 ± 1.2 nm) Insets are corresponding histogram of the size distribution.

Fig. S2 (a) TEM images of CdSe QDs; (b) The average sizes of CdSe QDs.

Fig. S3 XRD patterns of the CsPbBr₃.

Fig. S4 (a) Br element mapping of CsPbBr₃/CdSe heterojunction. (b) XRD patterns of the CdSe QDs.

Fig. S5 (a) Tauc plot of the prepared $CsPbBr_3$ and (b) CdSe QDs for determining their optical bandgaps.

Fig. S6 UPS spectra of CsPbBr₃ QDs and CdSe QDs.

Fig. S7a illustrated that the electrons in CdSe with higher Fermi levels would spontaneously diffuse to CsPbBr₃ with lower Fermi levels to achieve an equalization of their Fermi levels. The simultaneously generated built-in IEF facilitates the separation of photogenerated electrons and holes. Moreover, the band edge of CdSe will bend upward owing to the loss of electrons, while that of CsPbBr₃ will inversely bend downward. Upon light illumination, as shown in Fig S7c, the staggered band alignment can result in type-II heterojunction interfaces, which would lead to the opposite electron transfer routes. ^[1-3]

Fig. S8 Survey XPS spectra of CsPbBr₃ QDs (a) and CsPbBr₃/CdSe heterojunction (b); XPS spectra of CsPbBr₃/CdSe heterojunction: (c) Se 3d spectra; (d) Cd 3d spectra

Fig. S9 Photographs evolution of the CsPbBr₃ and CsPbBr₃/CdSe heterojunction in normal daylight and UV light after aging for 30 days. The same concentration of both CsPbBr₃ QDs and CsPbBr₃/CdSe heterojunction.

The CsPbBr₃/CdSe solution exhibited more clarification and high luminescence brightness, while the control CsPbBr₃ QDs solution was relatively turbidity, indicating severe degradation and aggregation of QDs due to the OA surface ligand loss or damage after aging for 30 days.^[4] These results clearly show that the heterojunction CsPbBr₃/CdSe heterojunction demonstrated has higher stability than single CsPbBr₃ QDs.

Fig. S10 PL spectra of CdSe QDs.

Fig. S11 Photocatalytic CO_2 reduction by using CsPbBr₃/CdSe heterojunction with various mole ratios of CsPbBr₃ and CdSe after 3 h of photocatalytic reaction.

Fig. S12 Control photocatalytic tests using CsPbBr₃/CdSe as catalysts under CO_2 atmosphere with the dark condition; under Ar atmosphere with light irradiation; and under CO_2 atmosphere with light irradiation after 3h.

The control photocatalytic experiments show that the traces of CO were detected under Ar atmosphere (Fig. S10), which may be related to the partial photooxidation of ethyl acetate.^[5-7]

Fig. S13 Mass spectra from 13 CO (m/z=29) produced over CsPbBr₃/CdSe catalyst in the photocatalytic reduction of 13 CO₂.

Fig. S14 (a) XRD patterns of CsPbBr₃/CdSe QDs before and after the photocatalytic reaction; (b) TEM image of CsPbBr₃/CdSe QDs after the photocatalytic reaction. The CsPbBr₃/CdSe QDs were maintained after three catalytic runs.

Fig. S15 The six adhesive sites for CO_2 onto the CsPbBr₃/CdSe heterojunction and corresponding adhesive energies.

Fig. S16 The five adhesive sites for CO_2 onto the CsPbBr₃ QDs and corresponding adhesive energies.

Fig. S17 Cyclic voltammogram curve of CsPbBr₃/CdSe heterojunction photocatalyst under CO₂ atmosphere and Ar atmosphere, respectively.

Table S1 Adhesive energies from different adhesive sites for CO_2 onto the CsPbBr₃QDs and CsPbBr₃/CdSe heterojunction.

Site	CsPbBr ₃	CsPbBr ₃ /CdSe		
1	0.072 eV	0.042 eV		
2	0.056 eV	0.196 eV		
3	-0.017 eV	-0.120 eV		
4	0.147 eV	0.094 eV		
5	-0.012 eV	-0.217 eV		
6		0.351 eV		

Table S2 A summary of the photocatalytic CO_2 reduction performances by metal halide perovskites photocatalysts.

			Products and Yield			
Photocatalyst	Solvent	Light source	(µmol g-1 h-1)		Refs.	
			СО	CH ₄	H ₂	
CsPbBr ₃ /CdSe	Ethyl acetate/H ₂ O	300 W Xe lamp, 420 nm	38.43	8.52	/	This work
		filter, 150 mW cm ⁻²				
CsPbBr ₃ /GO	Ethyl acetate	100 W Xe lamp, AM	4.89	2.47	0.13	J. Am. Chem.
		1.5G filter				5660
CsPbBr ₃ /BZN	CO ₂ /H ₂ O vapor	150 W Xe lamp, $\lambda > 420$ nm. 150 mW cm ⁻²	0.85	6.29	/	J. Mater. Chem.
W/MRGO						3762
MAPbI ₃ @PCN-	Ethyl acetate or	300 W Xe lamp, 400 nm	4.16	13.00	/	Angew. Chem.
221(Fe _{0.2})	Acetonitrile/H ₂ O	hiter, 100 mw cm ⁻²				58, 9491
CsPbBr ₃ /MXen	Ethyl acetate	300 W Xe-lamp, $\lambda > 420$	26.32	7.25	/	J. Phys. Chem.
e-20		nm				<i>Lett.</i> 2019, 10, 6590
CsPbBr ₃ @TiO-	Ethyl acetate/H ₂ O	300 W Xe lamp, 400 nm	12.9	/	/	RSC Adv. 2019,
CN		filter, 100 mW cm ⁻²				9, 34342
CsPbBr ₃ @g-	Ethyl acetate	300 W Xe lamp	2.08	22.82		Dalton Trans.
C ₃ N ₄						2019, 48, 14115
CsPbBr ₃ /UiO-	Ethyl acetate/H ₂ O	$300 \text{ W Xe lamp}, \lambda > 420$	8.21	0.26	/	Chem. Eng. J.
66(NH ₂)		nm				2019, 358, 1287
Co _{2%} @CsPbBr ₃	H ₂ O solution	300 W Xe lamp, 400 nm	11.95	/	/	ChemSusChem
/Cs ₄ PbBr ₆		filter,100 mW cm ⁻²				2019, 12, 4769
CsPbBr ₃ /Pd	CO ₂ /H ₂ O vapor	150 W Xe lamp, $\lambda > 420$	5.76	10.41	3.28	ACS Appl. Energy Mater
115(000)						2018, 1, 5083-
						5089
CsPbBr ₃ @ZIF-	CO ₂ /H ₂ O vapor	100 W Xe lamp	0.77	3.51	/	ACS Energy
67		AM 1.5G, 150 mW cm ⁻²				Lett. 2018, 3,
						2656
CsPbBr ₃ /a-	Ethyl acetate/isopropanol	150 W Xe lamp, AM	3.90	6.72	1.46	Adv. Mater.
TiO ₂ (20)		1.5G flter, 150 mW cm ⁻²				Interfaces 2018,

						1801015
Fe ²⁺ : CsPbBr ₃	Ethyl acetate/H ₂ O	450 W Xe-lamp,150	3.2	6.1	/	J. Phys. Chem.
		mW cm ⁻²				Lett. 2019, 10,
						7965
Cs ₂ AgBiBr ₆	Ethyl acetate	100 W Xe-lamp, AM	2.35	1.60	/	Small 2018, 14,
		1.5G, 150 mW cm ⁻²				1703762
Cs ₂ SnI ₆ (1.0)/Sn	CH ₃ OH/H ₂ O	32 W UV lamp	/	6.09	/	J. Am. Chem.
S_2		305nm, 80.38 µW cm ⁻²				Soc. 2019, 141,
						13434
Cs ₃ Bi ₂ I ₉	CO ₂ /H ₂ O vapor	32 W UV lamp	7.76	1.49	/	J. Am. Chem.
		305nm, 80.38 µW cm ⁻²				Soc. 2019, 141,
						20434
CsPbBr ₃	Ethyl acetate/H ₂ O	300 W Xe lamp, AM 1.5	4.3	1.5	0.1	Chem. Eur. J.
		G filter				2017, 23, 9481

References

 Y. Zhang, Q. Wang, D. Liu, Q. Wang, T. Li and Z. Wang, Appl. Surf. Sci., 2020, 521, 146434.

[2] Q. Xu, L. Zhang, B. Cheng, J. Fan and J. Yu, Chem, 2020, 6, 1543-1559.

[3] S. Bai, J. Jiang, Q. Zhang and Y. Xiong, Chem. Soc. Rev., 2015, 44, 2893-2939.

- [4] H. Yao, A. Lu, Z. Bai, J. Jiang, S. Qin, Chinese. Phys. B., 2022, 4, 046106.
- [5] J. Wang, J. Wang, N. Li, X. Du, J. Ma, C. He, Z. Li, ACS Appl. Mater. Interfaces., 2020, 12, 31477-31485.
- [6] Q. Wang, J. Wang, J. C. Wang, X. Hu, Y. Bai, X. Zhong and Z. Li, ChemSusChem, 2021, 14, 1131-1139.
- [7] L. Zhou, Y. F. Xu, B. X. Chen, D. B. Kuang and C. Y. Su, Small, 2018, 14, 1703762.