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Experimental Section

Chemicals and Materials: HNO;, H,SO,, NaH,PO,-H,0, melamine, H,PtCls and H,IrClg are
purchased from local suppliers. Carbon nanotubes used in this study were supplied by Nanotech Port

Co. Ltd. (Shenzhen, China) with a purity of 97%. All water used in this work was purified using a

Milli-Q water purification system which provides a resistance of 18.2 MQ at 25 ‘C. All chemicals

were used as received without any further treatment.

Synthesis of Pt/NP-CNTs: In a typical synthesis, 1.5 g of raw carbon nanotubes (CNTs) was treated

with 40 mL mixed acid solution (HNOj; : H,SO,4 = 1:3) in an ultrasonic water bath for 2 h to remove

most of impurities. After filtration, washing and drying at 60 C, the as-prepared O-CNTs was
sufficiently mixed with melamine (2 g) by grinding for 30 min and thermally treated at 750 C for 3
h in Ar with a heating rate of 5 ‘C min~!. The as-prepared sample was denoted as N-CNTs. Then, the
obtained N-CNTs (0.5 g) was ground with NaH,PO,-H,O (5 g) for 30 min and heated at 300 C for
2 hiin Ar with a heating rate of 5 ‘C min™! and cooled down to room temperature. After washing with

water, filtering and drying at 60 C, the obtained black powder was marked as NP-CNTs. To prepare

Pt/NP-CNTs, 200 mg NP-CNTs was dispersed in 60 ml deionized water with sonication, transformed

in an oil bath and heated to 70 ‘C under N, atmosphere. Then, 1 mL H,PtClg solution (0.01 g mL-")

was injected into the aqueous solution and stirred at 70 'C for 5 h. After filtration and drying at 60



‘C, the mixture was placed in a tube furnace and annealed at 300 °C for 2 h under Ar atmosphere.

The synthesized sample was denoted as Pt/NP-CNTs.

Synthesis of Ir/NP-CNTs: The synthetic procedure of Ir/NP-CNTs is similar to that of Pt/NP-CNTs

just by replacing H,PtClg solution (0.01 g mL") to H,IrClg solution (0.01 g mL-").

Characterization: Scanning electron microscopy (SEM) was performed on a Nova-450 electron
microscope. Transmission electron microscopy (TEM) images were taken on a JEOL JEM-2100F
field emission electron microscope at 200 kV. X-ray photoelectron spectroscopy (XPS) was
conducted on a ULVAC PHI Quantera spectrometer with the binding energy calibrated with C 1s at
284.6 eV. X-ray diffraction (XRD) patterns were collected on a X'Pert 3 X-ray powder diffractometer
operating at 40 kV and 40 mA with monochromatized Cu Ka radiation (A=0.15418 nm). Raman
spectra were recorded on a LabRam HR800 instrument with an excitation wavelength of 514.5 nm.
The compositions of the catalysts were analyzed by inductively coupled plasma atomic emission

spectrometry (ICP-AES, Thermo Fisher, USA).

Electrochemical measurements: HER performance tests were conducted on an Autolab

electrochemical workstation (PGSTAT302N) with a 0.5 M H,SO, solution as the electrolyte. A

conventional three-electrode system was used with the Pt/NP-CNTs on Ni foam (0.5 cm X 0. 5 cm)

as the working electrode, a glassy-carbon (GC) as the counter electrode and an Ag/AgClI (1 M KCl)
electrode as the reference electrode. All potentials reported were calculated versus the reversible
hydrogen electrode (RHE). Linear sweep voltammograms (LSV) and cyclic voltammetry (CV) tests
were recorded at a scan rate of 5 mV s! at room temperature. Electrochemical impedance
spectroscopy (EIS) was measured in a frequency range from 100 kHz to 0.1 Hz with an amplitude of

10 mV on an Autolab electrochemical workstation.



Figure S1. TEM image of O-CNTs.
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Figure S2. EDS mapping of Pt/NP-CNTs
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Figure S3. XRD pattern of It/NP-CNTs.

Figure S4. TEM image of [t/NP-CNTs and corresponding Ir nanocluster size distribution (inset).
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Figure S5. XPS survey spectrum of Pt/NP-CNTs.
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Figure S6. C 1s XPS spectrum of Pt/NP-CNTs.
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Figure S7. Overpotential comparison of recently reported representative HER electrocatalysts in

acidic electrolytes.
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Figure S8. CV curves of Pt/NP-CNTs at different scan rates from 10 mV s! to 30 mV s! in the

potential range of 0.17 to 0.27 (vs. RHE).
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Figure S9. The extraction of the Cy for NP-CNTs and Pt/NP-CNTs.

Table S1. The Ni contents in raw CNTs, O-CNTs, N-CNTs, NP-CNTs and Pt/NP-CNTs measured

by ICP-AES.
Sample Ni contents (wt%)
Raw CNTs 2.93
O-CNTs 0.92
N-CNTs 0.09
NP-CNTs 0.08
Pt/NP-CNTs 0.08

Table S2. Summary of recently reported representative HER electrocatalysts in acidic electrolytes.

No. Catalysts Overpotential ~ Tafel slope References
at o (mV) (mV dec!)

1 Pt/C 29 29 This work
2 Pt/NP-CNTs 25 28 This work
3 Au@PdAg NRBs 26 30 J. Am. Chem. Soc., 2016, 138, 1414.
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