Metallic FeCo Clusters Propelling the Stepwise Polysulfide Conversion in Lithium–Sulfur Batteries

Minhui Li^a, Hui Wang^{a,*}, Xuyun Wang^a, Jianwei Ren^{b,*}, Rongfang Wang^{a,*}

^a State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering,

Qingdao University of Science and Technology, Qingdao, 266042, China

^b Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa.

Experimental

1.1. Preparation of the Li₂S₆ solution

Mixed powders of Li₂S and sublimed sulphur at a molar ratio of 1:5 were dissolved into the solution containing Dioxolane (DOL)/ Dimethoxyethane (DME) (1:1, V/V). The mixture was stirring at 60 °C for 24 h to obtain the 0.2 M Li₂S₆ solution. Similarly, the 5 mM Li₂S₆ solution was prepared by following the same procedure.

1.2. Adsorption experiments

10 mg of Fe/PNC, FeCo/PNC and Co/PNC samples were put into the 5 mL of Li_2S_6 solution, and the individual system was kept for same period of time to visualize the color changes.

1.3. Physical Characterizations and Methods.

XRD patterns were recorded at 10° min⁻¹ on a Shimadzu XD-3A using filtered Cu- Ka radiation (λ =0.15418 nm) generated at 40 kV and 30 mA. Scanning electron

microscopy (SEM) images were obtained using a Carl Zeiss Ultra Plus electron microscope. High-angle annular dark field scanning transmission electron microscopy (STEM) images of the prepared samples were obtained using a JEOL (JEM-2000 FX) microscope operating at 200 kV. X-ray photoelectron spectroscopy (XPS) tests were analyzed on a PHI-5702 spectrometer, and C 1 s peak at 285.0 eV was used as a reference to calibrate the binding energies.

1.4. Preparation of PNC+Li₂S₆, nano Fe/PNC+Li₂S₆, Co/PNC+Li₂S₆ and FeCo/PNC+Li₂S₆ for XPS Analysis.

 Li_2S_6 solution (5 mM) was prepared by adding a mixture of lithium sulfide and sulfur powders with a molar ratio of 1:5 into DOL and DME (1:1, v/v), followed by vigorous magnetic stirring for 24 h at 60 °C in an Ar-filled glovebox. For the preparation of Fe/PNC+Li₂S₆, FeCo/PNC+Li₂S₆ and Co/PNC+Li₂S₆, the as-prepared Fe/PNC, FeCo/PNC, and Co/PNC (10 mg) was dispersed in 5mM Li₂S₆ solution of 5 mL by stand for 30 min. The precipitate of Fe/PNC+Li₂S₆, FeCo/PNC+Li₂S₆ and Co/PNC+Li₂S₆ was collected and dried under vacuum overnight.

1.5. Li-S Cell Assembly and Electrochemical Testing

To prepare the cathode, a mixture of S@FeCo/PNC (or S@Fe/PNC or S@Co/PNC) (70 wt %), Super P carbon (20 wt %), and PVDF (10 wt %) binder was casted onto a current collector (diameter = 10 mm) with NMP and dried at 60 °C overnight in a vacuum oven to remove solvent. The routine mass loading of sulfur in the electrode is about 1 mg cm⁻². Coin cells (2032 type) with stainless steel as the current collector were

assembled in an Ar-filled glovebox, using Celgard 2400 as separator and Li metal (thickness: 0.45 mm) as anode. The electrolyte contains 1.0 M LiTFSI and 0.1 M LiNO₃ electrolyte additive dissolved in DOL and DME (1:1, v/v). The electrolyte/sulfur (E/S) ratio is about 40 μ L mg⁻¹ unless otherwise noted. During electrochemical performance testing, both the current rate setting, and specific capacity calculation were referenced to the mass of sulfur in the cathode (1 C = 1675 mA h g⁻¹). The cells were tested on a Neware battery system with a voltage window of 1.7–2.8 V. CV measurements and EIS testing were performed on a CHI 650D electrochemical analyzer (CH Instruments). The scan rate and voltage range of the CV measurements were 0.1 mV s⁻¹ and 1.7–2.8 V, respectively. For the EIS testing, the frequency range was from 100 kHz to 10 mHz. All the electrochemical tests were performed at ambient temperature.

The Li⁺ diffusion rates were calculated based on the classic Randles-Sevcik equation: $I_P = (2.686 \times 10^5) n^{1.5} A D_{Li} + {}^{0.5} C_{Li} + v^{0.5}$

Where, I_P is the current peak; n is the number of electron transfer (n=2); A is the electrode area (A=1.13 cm²); ${}^{D}_{Li}{}^{+}$ is the coefficient of Li⁺ diffusion rates; ${}^{C}_{Li}{}^{+}$ is the Li^{+} concentration in the electrolyte (0.0002 mol cm⁻³); v is the scan rate.

Fig. S1. Schematic illustration for the synthesis of S@Fe/PNC and S@Co/PN samples.

Fig. S2. SEM images of (a, b) Fe/PNC and (c, d) Co/PNC sample.

Fig. S3. (a, b) SEM images of the PNC sample.

Fig. S4. SEM images of (a, b) S@Fe/PNC and (c, d) S@Co/PNC samples.

Fig. S5. (a) XPS survey spectra of Fe/PNC, FeCo/PNC and Co/PNC samples. The

high-resolution XPS spectra for (b) C 1s, (c) N 1s of FeCo/PNC sample.

Fig. S6. (a, b) N 1s and S 2p of FeCo/PNC and S@FeCo/PNC composites before and

after absorption.

Fig. S7. (a-c) The discharge-charge profiles of S@Fe/PNC, S@FeCo/PNC

and S@Co/PNC samples from 0.1 to 2.0 C.

Fig. S8. LSV between 1.8 and 2.8 V at a scan rate of 0.1 mV s^{-1}

Fig. S9. (a) The discharge-charge profiles, (b) rate capability, the cycling performance of FeCo/PNC electrode at (c) 0.2 C and (d) 1 C with 20 μ L electrolyte.

Fig. S10. CV curves of Li₂S₆ symmetric cells of S@Fe/PNC, S@FeCo/PNC and

S@Co/PNC samples.

Fig. S11 EIS Nyquist plots and corresponding equivalent circuit diagram of

Table S1. Physical properties of Fe/PNC, FeCo/PNC and Co/PNC samples.						
Sample		Specific Surface Area		Pore Volume		
		$/ m^2 g^{-1} / cm^3$		g-1		
Fe/PNC		355 0.92		2		
Fe Co/PNC		437		0.99		
Co /PNC		610	1.06			
Table S2. Elements content of three host materials (Fe/PNC, FeCo/PNC and Co/PNC).						
Sample	С	Ν	0	Fe	Co	
PNC	92.95	3.05	3.62	0.38	/	
nano Fe ₃ O ₄ /PNC	93.09	3.02	3.45	0.21	0.23	
Fe ₃ O ₄ /PNC	93.36	2.90	3.32	/	0.42	

COE /DMC	COF C /DMC		1 1
N(I)He/PINI	N(I) HeLO/PINL	and $N(n) \in O(PN)$	samples
$\mathcal{O}(w, \mathbf{I} \cup \mathbf{I} \cup \mathbf{V})$	$\mathcal{O}(w, \mathbf{I} \cup \mathcal{O}(\mathbf{I} \cup \mathbf{I}))$	u u u u u u u u u u u u u u u u u u u	sampies.

Table S3. Li-S performance comparison of Fe/Co composite with results reported in literature.

Sample	Sulfur loading	Initial capacity	Decay	Dof
	of cathode	(mAh g ⁻¹ , at n C)	(per cycle, %))
SC-Co	63%	1130 (0.5 C)	0.086	1
Co-CNCS	74.5%	1290 (0.2 C)	0.029	2
Co-Fe-P	70%	1118 (0.2 C)	0.043	3
Co/PNC	60%	1105 (0.2 C)	0.064	4

FeCo-C	70%	1250 (0.2 C)	0.073	5
NC-CoS2	68.7%	1150 (0.1 C)	/	6
Fe-PNC	70%	1138 (0.1 C)	/	7
FeCo/PNC	71.1%	1405 (0.1C)	0.045	This work

References

- J. Xie, B.-Q. Li, H.-J. Peng, Y.-W. Song, M. Zhao, X. Chen, Q. Zhang and J.-Q. Huang, *Adv. Mater.*, 2019, **31**, 1903813.
- 2. Q. Wu, X. Zhou, J. Xu, F. Cao and C. Li, *ACS Nano*, 2019, **13**, 9520-9532.
- Y. Chen, W. Zhang, D. Zhou, H. Tian, D. Su, C. Wang, D. Stockdale, F. Kang,
 B. Li and G. Wang, *ACS Nano*, 2019, **13**, 4731-4741.
- F. L. Zhang, S. Ji, H. Wang, H. G. Liang, X. Y. Wang and R. F. Wang, *Small Methods*, 2021, 5, 2100066.
- 5. H. Li, L. Fei, R. Zhang, S. Yu, Y. Zhang, L. Shu, Y. Li and Y. Wang, *Journal of Energy Chemistry*, 2020, **49**, 339-347.
- Z. Zhang, B. Zhao, F. Ma, Y. Jin, H. Gao and W. Kim, *Electrochimica Acta*, 2019, **324**, 134899.
- Z. Liu, L. Zhou, Q. Ge, R. Chen, M. Ni, W. Utetiwabo, X. Zhang and W. Yang, ACS Appl. Mater. Interfaces, 2018, 10, 19311-19317.