Supplementary Material

Laminated ferroelectric polymer composites exhibiting synchronous ultrahigh
discharge efficiency and energy density via utilizing multiple-interface barriers

Jie Chena, Xiaoyong Zhanga, Zhen Wanga, Weixing Chena, Qibin Yuanb,* and Yifei Wangc,* \\
a Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China \\
b School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China \\
c Electrical Insulation Research Center, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA \\

* Corresponding authors. yuanqibin-sust@163.com (Q. Yuan), y.wang@uconn.edu (Y. Wang)
Fig. S1. Schematic illustration of tri-layered structure composite film.

Fig. S2. Optical images of a) P(VDF-HFP)-S, b) 50 wt% PMMA-S and c) PMMA-S, respectively.

Fig. S3. SAED pattern of the prepared SrTiO$_3$@PDA plates.

Fig. S4. TEM image of the prepared SrTiO$_3$@PDA plates.
Fig. S5. Cross-section SEM image with a large scale of P(VDF-HFP)-S film, scale bar 40 μm.

Fig. S6. a) Cross-section SEM image, (b) magnified SEM image of 50 wt.% PMMA-S film.

Fig. S7. a) Cross-section SEM image, (b) magnified SEM image of PMMA-S film.
Fig. S8. a) dielectric constant at 1 kHz, b) dielectric loss at 1 MHz of the tri-layered configuration composites, single-layered configuration composite and pristine constituent polymers.

Fig. S9. Leakage current density a) measured at 25 MV m\(^{-1}\) and b) measured at 50 MV m\(^{-1}\) of tri-layered configuration composites, single-layered configuration composite, and pristine P(VDF-HFP).
Fig. S10. DC electrical resistivity a) measured at 25 MV m\(^{-1}\), b) measured at 50 MV m\(^{-1}\), and c) measured at 75 MV m\(^{-1}\) of tri-layered configuration composites, single-layered configuration composite, and pristine P(VDF-HFP).
Fig. S11. Unipolar electric displacement–electric fields ($D–E$) loops at varied electric fields of a) pristine P(VDF-HFP), b) single layer composite with 2.5 vol.% ST@PDA platelets and c) PMMA.
Fig. S12. Maximum displacement at varied electric fields of pristine P(VDF-HFP), single layer composite with 2.5 vol.% ST@PDA platelets, and tri-layered composites.

Fig. S13. Remnant displacement at varied electric fields of pristine P(VDF-HFP), single layer composite with 2.5 vol.% ST@PDA platelets, and tri-layered composites.
Fig. S14. Electric displacement difference at varied electric fields of pristine P(VDF-HFP), single layer composite with 2.5 vol.% ST@PDA platelets, and tri-layered composites.

Fig. S15. Charged energy density at varied electric fields of pristine P(VDF-HFP), single layer composite with 2.5 vol.% ST@PDA platelets, and tri-layered composites.
Fig. S16. Ferroelectric loss at varied electric fields of pristine P(VDF-HFP), single layer composite with 2.5 vol% ST@PDA platelets, and tri-layered composites.

Fig. S17. Conduction loss at varied electric fields of pristine P(VDF-HFP), single layer composite with 2.5 vol% ST@PDA platelets, and tri-layered composites.
Fig. S18. Enhancement ratio at breakdown electric fields of single layer composite with 2.5 vol% ST@PDA platelets and tri-layered composites in comparison with pristine P(VDF-HFP).

Fig. S19. Optical image of 50 wt% PMMA-S after winding test (1 mouth).
Fig. S20. Unipolar electric displacement–electric fields (D–E) loops at 300 MV m$^{-1}$ of 50 wt% PMMA-S before and after wound tests.

Fig. S21. Platelets size distributions of Ba$_{0.5}$Sr$_{0.5}$TiO$_3$ platelets.
Fig. S22. Unipolar electric displacement–electric fields (D–E) loops at varied electric fields of 50 wt.% PMMA-S tri-layered composite with 1 vol% BST@PDA plates.

Fig. S23. Unipolar electric displacement–electric fields (D–E) loops at varied electric fields of PMMA-S tri-layered composite with 0.5 vol% BST@PDA plates.