Supporting Information for

Electronic Modulation of NiO by Constructing Amorphous/Crystalline

Heterophase to Improve Photocatalytic Hydrogen Evolution

Linke Cai^{a†}, Bo Yan^{a†}, Qian Xue^{b†}, Jiling Li^a, Pu Liu^a, Xueqiang Qi^{b*} & Guowei Yang^{a*}

^a State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology

Research Center, School of Materials Science & Engineering, Sun Yat-sen University,

Guangzhou 510275, P. R. China

^b School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China

[†] These authors contributed equally to this work.

* Corresponding authors: xqqi@cqut.edu.cn, stsygw@mail.sysu.edu.cn

Samples	NiO ₂ -CN	NiO ₄ -CN	NiO ₆ -CN	NiO ₈ -CN
Mass fraction of Ni	8.75%	17.13%	19.03%	24.13%

Table S1. Mass fraction of Ni in NiO_x -CN samples with different NiO-LAL content.

Table S2. BET surface areas of $g-C_3N_4$, NiO-LAL and NiOx-CN samples with different NiO-LAL content.

Samples	g-C ₃ N ₄	NiO ₂ -CN	NiO ₄ -CN	NiO ₆ -CN	NiO ₈ -CN	NiO- LAL
BET Surface Area (m ² ·g ⁻¹)	199.87	90.10	100.31	92.72	84.86	4.48

Figure S1. TEM images of NiO before laser treatment (a) and NiO-LAL at low magnification (b).

Figure S2. SEM images of g- C_3N_4 (a) and NiO-LAL (b).

Figure S3. DFT pore volume distributions of as-prepared samples.

Figure S4. XPS spectra of the survey for $g-C_3N_4$, NiO-LAL and NiO₄-CN.

Figure S5. Photographs of g-C₃N₄, NiO-LAL and NiO_x-CN samples with different

NiO-LAL content.

Figure S6. The plots of $(\alpha hv)^{1/2}$ versus hv for the band energies of g-C₃N₄ and NiO₄-CN.

Figure S7. PL spectroscopy of $g-C_3N_4$, NiO-LAL and NiO_x-CN samples with different NiO-LAL content.

Figure S8. Photocatalytic H_2 generation performances of cNiO-CN (a), NiO₄-CN-C (b)

and NiO-LAL (c).

Figure S9. XRD patterns of NiO_4 -CN before and after photocatalytic reaction (a), and TEM images of NiO_4 -CN before (b) and after (c) photocatalytic reaction.

Figure S10. The structural models of pristine NiO (a) and amorphous/crystalline NiO homojunction (b).

Figure S11. The Mott-Schottky plots of g- C_3N_4 (a) and NiO-LAL (b).