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Characterization

The cross-sectional views of the nanocomposites, characterization was carried out by using field 

emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The 

crystalline structure of the material was obtained by X-ray diffraction (XRD) on a D8 Advance X-ray 

diffractometer. The infrared spectrum was gained by Fourier-transform infrared spectroscopy. The 

dielectric performances of the nanocomposites were measured at room temperature by means of an 

LCR meter from 102 Hz to 106 Hz with 1000 mV. The D-E loops were measured with the Premier II 

ferroelectric test system (Poly K, United States). The Young’s modulus values were derived from 

strain–stress curves measured with a TA RSA-G2 Solids Analyzer, using a constant linear stretching 

rate of 10 mm/min.

Finite Element Simulations of Dielectric Breakdown

For further confirm the effect of the nonequilibrium structure on the dielectric breakdown strength 

of the composite films, the potential distributions, electric field and the electric tree channels were 

simulated via MATLAB and COMSOL Multiphysics. The progression chance p of electric tree 

divergence is defined in the percolation model as well as the fractal media decomposition model as 

follows
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where , , , η and  were the threshold electrical potential of the neat P(VDF-𝜙𝑃(𝑉𝐷𝐹 ‒ 𝐻𝐹𝑃) 𝜙𝑖,𝑗
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HFP), electrical potential of discharged point, probable point, fractal dimension and linked point, 

respectively. The loss represented evolve loss of tip electric tree channels.
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Fig. S1. (a) Cross-sectional SEM images of P(VDF-HFP) film; (b) Cross-sectional SEM images of 

P(VDF-HFP)/HAP NWs-4 nanocomposite film.
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Fig. S2. (a) XRD patterns, (b) FT-IR spectra of P(VDF-HFP), P(VDF-HFP)/HAP NWs-4 and P(VDF-

HFP)/HAP@Al2O3 NWs-4.
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Fig. S3. Dielectric constant and dielectric loss with frequency of the P(VDF-HFP) and P(VDF-

HFP)/HAP@Al2O3 NWs nanocomposites as a function of HAP@Al2O3 NWs contents.
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Fig. S4. Characteristic breakdown strength (Eb) and shape parameter (β) of the P(VDF-HFP) and 

P(VDF-HFP)/HAP@Al2O3 NWs nanocomposites as a function of HAP@Al2O3 NWs contents.
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Fig. S5. D−E curves of the nanocomposites of the P(VDF-HFP) and P(VDF-HFP)/HAP@Al2O3 NWs 

nanocomposites as a function of HAP@Al2O3 NWs contents.
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Fig. S6. D−E curves of the pristine P(VDF-HFP) and P(VDF-HFP)/HAP@Al2O3 NWs 

nanocomposites as a function of HAP@Al2O3 NWs contents at the highest electric field.
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Fig. S7. The representative D−E loops of P(VDF-HFP) and P(VDF-HFP)/HAP@Al2O3 NWs 

nanocomposites as a function of HAP@Al2O3 NWs contents at 400 MV/m.



S10

Fig. S8. (a) Dmax－Dr and Dr at 400 MV/m, (b) Dmax－Dr and Dr at the highest electric field of P(VDF-

HFP) and P(VDF-HFP)/HAP@Al2O3 NWs nanocomposites as a function of HAP@Al2O3 NWs 

contents.
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Fig. S9. Dielectric constant and dielectric loss with frequency of the pristine P(VDF-HFP) and P(VDF-

HFP)/HAP NWs nanocomposites.
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Fig. S10. Weibull plots and determined characteristic breakdown strength of the pristine P(VDF-HFP) 

and P(VDF-HFP)/HAP NWs nanocomposites.
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Fig. S11. (a) Leakage current densities as a function of electric field of the pristine P(VDF-HFP) and 

P(VDF-HFP)/HAP NWs nanocomposites; (b) Leakage current densities as a function of 

nanocomposites loaded with the different contents of HAP NWs and HAP@Al2O3 NWs; c) Volume 

resistivity as a function of nanocomposites loaded with the different contents HAP@Al2O3 NWs; d) 

Volume resistivity as a function of nanocomposites loaded with the different contents HAP NWs.
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Fig. S12. Young’s modulus and theoretical breakdown strength of pure P(VDF-HFP), 4vol% P(VDF-

HFP)/HAP NWs, and 4vol% P(VDF-HFP)/HAP@Al2O3 NWs.
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Fig. S13. Broadband dielectric for composite dielectrics at different temperatures of (a) pristine 

P(VDF-HFP), (b) 4 vol% P(VDF-HFP)/HAP NWs, and (c) 4 vol% P(VDF-HFP)/HAP@Al2O3 NWs; 

Frequency-dependence of imaginary electric modulus (M″) for (d) the pristine P(VDF-HFP), (e) 4 

vol% P(VDF-HFP)/HAP NWs, and (f) 4 vol% P(VDF-HFP)/HAP@Al2O3 NWs composite films.
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Fig. S14. Discharged energy density and efficiency of the pristine P(VDF-HFP) and P(VDF-

HFP)/HAP NWs nanocomposites.
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Fig. S15. The D−E curves of P(VDF-HFP)/HAP NWs nanocomposites as a function of HAP NWs 

contents.
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Fig. S16. The D−E loops of P(VDF-HFP), P(VDF-HFP)/HAP NWs-4 and P(VDF-HFP)/HAP@Al2O3 

NWs-4 nanocomposites at 500 MV/m.
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Figure S17. The Dmax, Dmax－Dr and Dr of P(VDF-HFP), P(VDF-HFP)/HAP NWs-4 and P(VDF-

HFP)/HAP@Al2O3 NWs-4 nanocomposites at 500 MV/m.


