Supporting Information

Defect engineering of Ni₃S₂ nanosheets with highly active (110) facets towards efficient electrochemical biomass valorization

Lingxia Zheng,^{*a,b} Zhuoqing Lv,^{a,c} Penghui Xu,^a Hanshuai Xu,^a Mengkai Zhu,^a Yujuan Zhao,^a Xiaowei Shi,^{a,b} Hong-En Wang,^{*d} and Huajun Zheng^{*a,b}

^aDepartment of Applied Chemistry, Zhejiang University of Technology, Hangzhou 310014, P. R. China ^bState Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China ^cCQC Intime Testing Technology Co., Ltd, Suzhou 215104, P. R. China ^dCollege of Physics and Electronics Information, Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, P. R. China

E-mail: <u>lxzheng@zjut.edu.cn;</u> <u>zhenghj@zjut.edu.cn;</u> <u>hongen.wang@outlook.com</u>

Figure S1. SEM images of (a,b) Ni_3S_2 -3h and (c,d) Ni_3S_2 -8h.

Figure S2. XRD patterns of different samples.

Figure S3. Raman spectra of Ni₃S₂-5h and V_s-Ni₃S₂.

Figure S4. LSV curves with and without 30 mM BA using (a) Ni_3S_2 -3h and (b) Ni_3S_2 -8h catalysts.

Figure S5. Comparison of current density at varied potentials over Ni_3S_2 -3h and Ni_3S_2 -8h in 30 mM BA.

Figure S6. Comparison of current density at varied potentials over Ni_3S_2 -3h and Ni_3S_2 -8h in 30 mM BA.

Figure S7. CV curves of (a) Ni_3S_2 -3h, (b) Ni_3S_2 -5h, (c) Ni_3S_2 -8h and (d) V_s - Ni_3S_2 . (e) The relationship between oxidation peak current in CV curves and scan rates.

Figure S8. The standard curves of (a) benzyl alcohol, (b) benzaldehyde and (c) benzoic acid.

Figure S9. BAOR conversion, yield, selectivity and FE over different electrocatalysts at 1.35 V vs RHE.

Figure S10 First-order kinetic models of the BA oxidation catalyzed by Ni_3S_2 -5h and V_s - Ni_3S_2 catalysts.

Figure S11. (a) SEM, (b) TEM, (c) HRTEM images and (d) mapping result of V_s -Ni₃S₂ catalyst after BA oxidation.

Figure S12. XPS spectra of (a) Ni 2p and (b) S 2p of V_s -Ni₃S₂ catalyst before and after BA electrolysis.

Figure S13. CV curves in non-Faradic region at varied scan rates for (a) Ni_3S_2 -3h, (b) Ni_3S_2 -5h, (c) Ni_3S_2 -8h and (d) V_s - Ni_3S_2 catalysts in 1M KOH+30 mM BA.

Figure S14. ECSA values of Ni₃S₂-5h and V_s-Ni₃S₂ catalysts.

Figure S15. EIS of Ni_3S_2 -3h and Ni_3S_2 -8h catalysts.

Figure S16. Projected density of states (PDOS) of Ni_3S_2 and V_s - Ni_3S_2 .

	η@50mA cm ⁻²	Tafel slope		
	(mV)	(mV del ⁻¹)		
Ni ₃ S ₂ -3h	303	83.34		
Ni ₃ S ₂ -5h	259	105.03		
Ni ₃ S ₂ -8h	291	122.23		
V _s -Ni ₃ S ₂	286	98.91		

Table S1. The electrocatalytic performances of the four catalysts in OER.

 Table S2. The electrocatalytic performances of the four catalysts in BAOR.

	•	-		•		
	Peak current	Tafel slope	ECSA	TOF@1.325	R _s	R _{ct}
	density	(mV del ⁻¹)	(mF cm ⁻²)	V	(Ω)	(Ω)
	(mA cm ⁻²)			(h ⁻¹)		
Ni ₃ S ₂ -3h	42.96	70.29	8.53	57.0	1.229	198.9
Ni ₃ S ₂ -5h	75.16	57.52	10.35	101.2	0.965	158.6
Ni ₃ S ₂ -8h	68.51	56.06	11.12	97.7	1.369	33.22
V _s -Ni ₃ S ₂	93.92	48.15	10.50	295.4	0.894	1.396

Catalyst	Potential Time Conv. (Conv. (%)	Sel.	Yield	F.E.
	(V vs. RHE)	(min)		(%)	(%)	(%)
Ni ₃ S ₂ -3h	1.35V	100	21.21	79.07	16.77	72.23
Ni ₃ S ₂ -5h	1.35V	100	96.98	96.51	93.6	99.99
Ni ₃ S ₂ -8h	1.35V	100	50.79	77.67	39.45	87.35
V _s -Ni ₃ S ₂	1.35V	100	100	99.34	99.34	99.99

Table S3. The electrocatalytic performances of the four catalysts in this study.

Reaction condition: organic substrate concentration of 30 mM with 20 mL volume, 1M KOH, electrolytic potential of 1.35 V. The products were evaluated by HPLC analysis.

Catalyst	BA	Potential	Time	Conv.	Sel.	F.E.	Refs.
	Concentration	(V vs.RHE)	(min)	(%)	(%)	(%)	
		or Current					
1.0 h-Ni(OH) ₂	40 mM	20 mA	/	99.99	99.30	98.62	1
hp-Ni	10 mM	1.423 V	/	~99.99	/	98	2
Co ₃ O ₄ NWs	50 mM	/	/	99	92	56.82	3
Mo-Ni	25 mM	1.35 V	/	/	/	/	4
A-Ni-Co-H/NF	100 mM	1.5 V	15	99	99	/	5
NiCu NTs	20 mM	1.424 V	120	100	98	90	6
Co _{0.83} Ni _{0.17} /AC	10 mM	1.425 V	-	100	99.4	96	7
V _s -Ni ₃ S ₂	30 mM	1.325 V	100	100	97.8	99.99	This
							work

Table S4. The catalytic performance of BA electro-oxidation in literatures.

References

1. X. Chen, X. Zhong, B. Yuan, S. Li, Y. Gu, Q. Zhang, G. Zhuang, X. Li, S. Deng, J. Wang, *Green Chem.*, 2019, **21**, 578-588.

- 2. B. You, X. Liu, X. Liu, Y. Sun, ACS Catalysis, 2017, 7, 4564-4570.
- Z. Yin, Y. Zheng, H. Wang, J. Li, Q. Zhu, Y. Wang, N. Ma, G. Hu, B. He, A. Knop-Gericke,
 R. Schlögl, D. Ma, *ACS Nano*, 2017, **11**, 12365-12377.
- 4. X. Cui, M. Chen, R. Xiong, J. Sun, X. Liu, B. Geng, *Journal of Materials Chemistry A*, 2019, **7**, 16501-16507.
- 5. H. Huang, C. Yu, X. Han, H. Huang, Q. Wei, W. Guo, Z. Wang, J. Qiu, *Energy Environ. Sci.*, 2020, **13**, 4990-4999.
- 6. L. Zheng, Y. Zhao, P. Xu, Z. Lv, X. Shi, H. Zheng, *J. Mater. Chem. A*, 2022, **10**, 10181-10191.
- 7. G. Liu, X. Zhang, C. Zhao, Q. Xiong, W. Gong, G. Wang, Y. Zhang, H. Zhao, *New Journal of Chemistry*, 2018, **42**, 6381-6388.