Supplementary File

Potassium doping towards enhanced Na-ion diffusivity in

fluorophosphate cathode for sodium-ion full cell

Hong Yu, ^a Yan Gao, ^a Jinjin Wang, ^a Qinghua Liang, ^b Jinzhao Kang, ^a Xiaomei Wang, ^a Cheng-Feng Du*^a and Qingyu Yan ^c

- a. State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
- b. Department of Chemical Engineering, The University of Melbourne, Victoria 3010, Australia.
- c. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
- * Corresponding Author, E-mail: cfdu@nwpu.edu.cn

Fig. S1 XRD patterns of NVPOF, NVPOF- $K_{0.05}$, NVPOF- $K_{0.10}$ and NVPOF- $K_{0.15}$ samples.

Fig. S2 XRD pattern and Rietveld refinement plot for NVPOF material.

Fig. S3 XRD pattern and Rietveld refinement plot for NVPOF- $K_{0.15}$ material.

Fig. S4 FESEM images and corresponding EDX elemental mapping of NVPOF material.

Fig. S5 (a) and (b) FESEM images of NVPOF- $K_{0.10}$ and (c) and (d) FESEM images of NVPOF- $K_{0.15}$.

Fig. S6 XPS results of NVPOF and NVPOF- $K_{0.05}$. Survey of (a) NVPOF and (c) NVPOF- $K_{0.05}$; (b) Na 1s of NVPOF and NVPOF- $K_{0.05}$.

Fig. S7 First three CV curves at 0.1 mV s⁻¹ of (a) NVPOF and (b) NVPOF-K_{0.05}. (c) Comparison of CV curve at 2 mV s⁻¹ of NVPOF and NVPOF-K_{0.05}.

Fig. S8 The first three GCD curves of (a) NVPOF and (b) NVPOF- $K_{0.05}$ cathodes at a current density of 0.5 C.

~ I	Molar ratio of Na: V: (K)			
Sample	ICP-OES	ICP-OES (Na)	ICP-OES (V)	
NVPOF	2.960:1.876	1:0.634	1.578: 1	
NVPOF-K _{0.05}	3.358:2.151:0.018	1:0.640:0.005	1.561:1:0.008	

Table S1 Chemical compositions of NVPOF and NVPOF-K_{0.05} determined by ICP-OES

Table S2 Anodic and cathodic peak potentials of NVPOF and NVPOF- $K_{0.05}$ cathodes at different

scan rates.							
Sample	Scan rate/	Anodic peak		Cathodic peak		Polarization	
	$mV s^{-1}$	O1/V	O2/V	R1/V	R2/V	(O1-R1)/mV	(O2-R2)/mV
NVPOF	0.1	3.720	4.088	3.408	3.958	312	130
	2.0	3.903	4.211	3.229	3.836	674	375
NVPOF-K _{0.05}	0.1	3.719	4.085	3.461	3.965	258	120
	2.0	3.855	4.185	3.383	3.869	472	316

Table S3 A comparison of electrochemical performance of the NVPOF- $K_{0.05}$ cathode this work with the reported cathodes.

		Cycle stability	
Cathode materials	Rate capability	(C rate/cycle times/capacity	Ref
		retention)	
NVPOF-MWCNT	~60 mAh g ⁻¹ @20 C	0.1 C/120/89%	[1]
NVPOF@C/G	78.2 mAh g ⁻¹ @20 C	2 C/200/92.9%	[2]
$Na_{2.94}Li_{0.06}V_2(PO_4)_2F_3$	65 mAh g ⁻¹ @20 C		[3]
NKVPF@CNT	50 mAh g ⁻¹ @50 C	10 C/1600/90.9%	[4]
NVPOF-K _{0.05} (this work)	49.11 mAh g ⁻¹ @80 C	10 C/500/100%	

Table S4 Resistances and apparent diffusion coefficients calculated from the EIS of NVPOF and

$\frac{\text{NVPOF-K}_{0.05} \text{ cathode.}}{\text{Sample}} \qquad R_{s} / \Omega \qquad R_{ct} / \Omega \qquad \sigma_{w} / \Omega \qquad D / \text{cm}^2 \text{ s}^{-1}$				
NVPOF	7.14	273	3724.52	2.07.10-15
NVPOF-K _{0.05}	5.31	310	1800.00	8.85.10-15

Reference

[1] Kumar P R, Jung Y H, Wang J E, et al. $Na_3V_2O_2(PO_4)_2F$ -MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries. Journal of Power Sources, 2016, 324, 421-427.

[2] Jin H, Liu M, Uchaker E, et al. Nanoporous carbon leading to the high performance of a $Na_3V_2O_2(PO_4)_2F@$ carbon/graphene cathode in a sodium ion battery. CrystEngComm, 2017, 19(30), 4287-4293.

[3] Kosova N V, Rezepova D O. Mixed sodium-lithium vanadium fluorophosphates Na_{3-x}Li_xV₂(PO₄)₂F₃: The origin of the excellent high-rate performance. Journal of Power Sources, 2018, 408, 120-127.w

[4] Li L, Liu X, Tang L, et al. Improved electrochemical performance of high voltage cathode $Na_3V_2(PO_4)_2F_3$ for Na-ion batteries through potassium doping. Journal of Alloys and Compounds, 2019, 790, 203-211.