Supporting Information

Enhanced Electroreduction of CO₂ by Ni–N–C Catalysts from the Interplay Between Valency and Local Coordination Symmetry

Dongyup Shin,a Hansol Choi,b Jihun An,a Chang Ho Sohn,c,d Chang-Hyuck Choi,e Hyeyoung Shin,f and Hyungjun Kim*a

aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

bSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

cCenter for NanoMedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea.

dGraduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.

eDepartment of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.

fGraduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34148, Republic of Korea.

*Corresponding authors: (H. Kim) linus16@kaist.ac.kr (H. Shin) shinhya@cnu.ac.kr
Fig. S1 DFT-calculated geometry of the CO$_2$ adsorption step on the Ni$^{2+}$ sites. Each simulation cell had an excess charge corresponding to -2.0 e, and the potentials versus SHE (V_{SHE}) corresponding to the excess charge were specified.
Fig. S2 Change of partial charges on the Ni center (blue) and C atom of the CO$_2$ (grey) depending on the applied potential U_{appl}. No charge transfer is observed between Ni$^{2+}$ and CO$_2$.
Fig. S3 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH = 6.8) of the CO$_2$, COOH, and CO intermediates adsorbed on the Ni–N$_4$ system.
Fig. S4 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH = 6.8) of the CO$_2$, COOH, and CO intermediates adsorbed on the Ni–N$_3$O system.
Fig. S5 Grand-canonical energy profiles versus SHE (first row) and RHE (second row, at pH = 6.8) of the CO$_2$, COOH, and CO intermediates adsorbed on the Ni–N$_3$V system.
Fig. S6 Grand-canonical energy profiles versus RHE (pH = 6.8) of Ni–N₄, Ni–N₃O, and Ni–N₃V systems with two different Ni oxidation states (Ni²⁺ and Ni¹⁺).
Fig. S7 Change of local spin (S) at the Ni$^{1+}$ center for Ni–N$_4$ (blue), Ni–N$_3$O (coral), and Ni–N$_3$V (green) systems with RHE (pH = 6.8).
The grey, blue, red, light-green and cyan spheres represent carbon, nitrogen, oxygen, nickel and hydrogen atoms, respectively. The adsorption energy (ΔE_{ads}) of each adsorbate are computed as the following steps: $\Delta E_{ads,H} = E(H-Ni-Ni_3V) - E(Ni-Ni_3V) - \frac{1}{2}E(H_2)$, $\Delta E_{ads,OH} = E(OH-Ni-Ni_3V) - E(Ni-Ni_3V) - E(H_2O) + \frac{1}{2}E(H_2)$, and $\Delta E_{ads,H_2O} = E(H_2O-Ni-Ni_3V) - E(Ni-Ni_3V) - E(H_2O)$. Note that the ΔE_{ads} does not include an entropic contribution. For example, a dramatic entropic cost is expected for the binding of liquid water ($S_{wat(liq.)} = 69.9 \text{ J K}^{-1} \text{ mol}^{-1}$, converting into the free energy cost of 0.22 eV at 300 K).