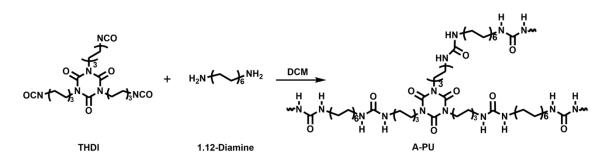
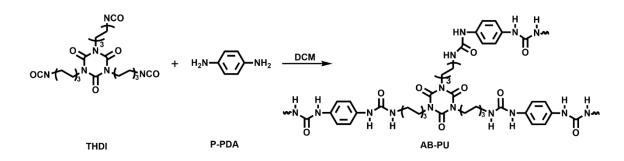
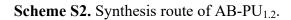
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

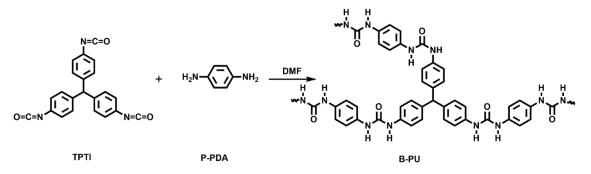
Supporting Information


A Dynamic Polyurea Network with Exceptional Creep Resistance

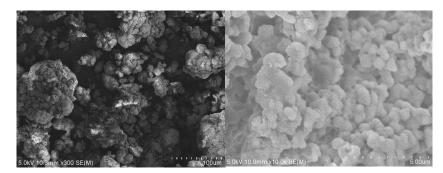
Yan Ma, Hong-Qin Wang, Pei-Chen Zhao, Fang-Zhou Wang, Cheng-Hui Li*

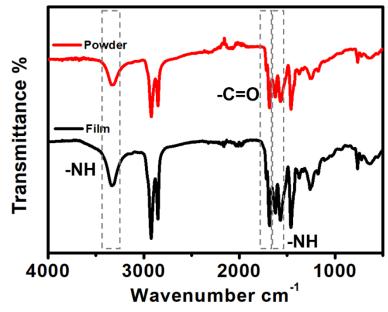

State Key Laboratory of Coordination Chemistry, School of Chemistry and ChemicalEngineering, Nanjing National Laboratory of Microstructures, CollaborativeInnovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023,P. R. China.

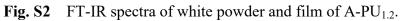

*Correspondence to: chli@nju.edu.cn


1. Preparation of A-PU_x, AB-PU_{1.2} and B-PU_{1.2}

Scheme S1. Synthesis route of $A-PU_x$.






Scheme S3. Synthesis route of B-PU_{1.2}.

2. Results and discussions

Fig. S1 SEM images of raw products of A-PU_{1.2}.

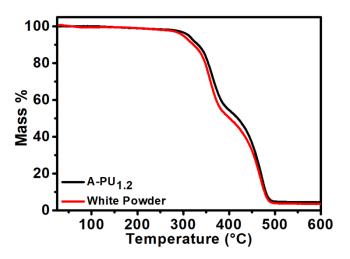


Fig. S3 TGA curves of A-PU_{1.2} film and white powder heated from 30 to 600 $^{\circ}$ C.

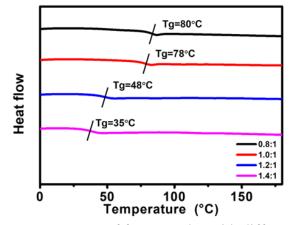
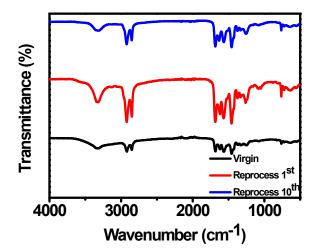



Fig. S4 DSC curves of four samples with different ratios.

Fig. S5 The optical image of $A-PU_{1,2}$ after tensile test.

Fig. S6 FT-IR curves of A-PU $_{1,2}$ after multiple cycles of reprocess.

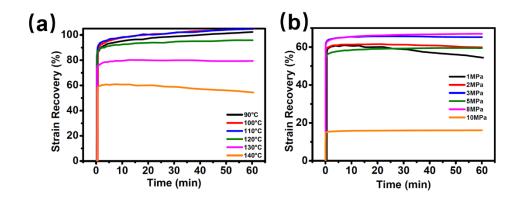


Fig. S7 Creep recovery curves of A-PU_{1.2} (a) at different temperatures after exposure to 1 MPa, (b) at 140 $^{\circ}$ C under different levels of stresses.

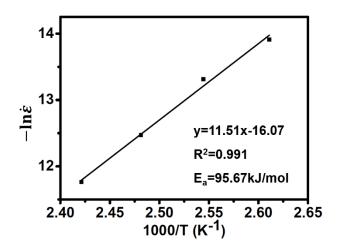


Fig. S8 Arrhenius fitting plot of the A-PU_{1.2} obtained from creep experiments.

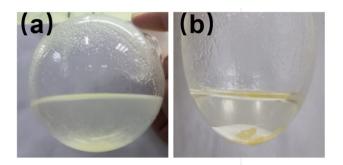


Fig. S9 The state of (a) A-PU_{1.2} white powder and (b) film fragments in NMP at 150 $^{\circ}$ C.

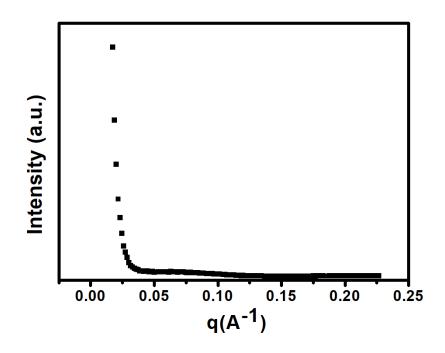
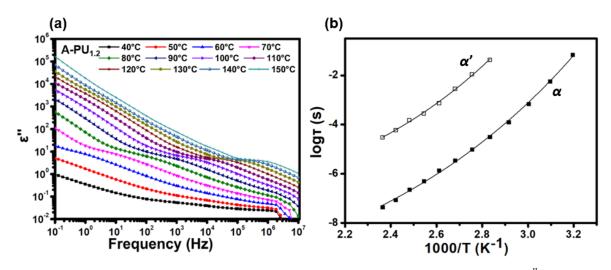



Fig. S10 The SAXS spectrum of A-PU_{1.2}. No peak characteristic was observed in this

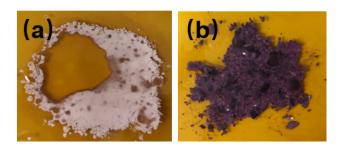

spectrum, indicating that there is no obvious phase separation in A-PU_{1.2.}

Fig. S11 Dielectric relaxation behavior of A-PU_{1.2} above T_{g} . (a) Dielectric loss ε'' as a function of frequency for A-PU_{1.2}. (b) Average relaxation time as a function of temperature for α and α' relaxation process in A-PU_{1.2}. Solid lines represent VFT fitting.

Fig. S12 The optical images of A-PU_{0.8} and A-PU_{1.0} after hot pressing of 140 $^{\circ}$ C and 1 MPa for 30 minutes.

Fig. S13 The optical images of (a) AB-PU_{1.2} and (b) B-PU_{1.2} after hot press of 180 $^{\circ}$ C and 2 MPa for 2 hours.

Fig. S14 The optical image of fracture surface of A-PU_{1.2} adhesive.

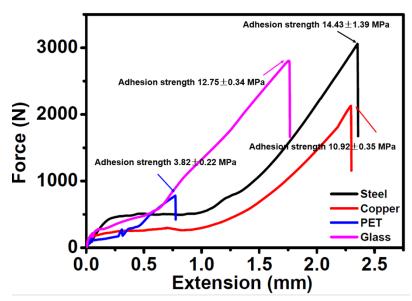


Fig. S15 The force-versus extension curves for steel, copper, PET and glass sheets adhered by $A-PU_{1,2}$ to show adhesion strength.

Hot press Strength Young's Elongation Toughness temperature (°C) (MJ/m³) (MPa) Modulus (%) (MPa) 120 13.44 349.13 5.2 0.39 130 13.54 206.27 12.1 1.04 140 26.66 188.27 132.2 36.33 150 31.84 231.86 144.5 48.97 160 353.93 208.2 89.04 47.79

Table S1. Mechanical properties of A-PU $_{1,2}$ under different hot press temperature.

Table S2. Creep rate $\dot{\varepsilon}$ of A-PU_{1.2} at different temperatures under a stress of 1MPa.

Temperature (°C)	Creep rate $\dot{\varepsilon}$ (%•s ⁻¹)	
90	1.45*10 ⁻⁶	
100	1.25*10 ⁻⁶	
110	9.09*10 ⁻⁷	
120	1.65*10 ⁻⁶	
130	3.83*10 ⁻⁶	
140	7.78*10 ⁻⁶	

Table S3. The comparison of creep behavior of recyclable CANs reported previously.

	1 1		1	1 5
Ref.	Dynamic motifs		Stress	Strain(%)
		Temperature	(MPa)	
		(°C)	, , ,	
12	silyl ether metathesis	140	0.1	80
	$ \begin{array}{c} $			
24	S,O-thioacetal	140	1	3
25	β-carbonyl carboxylate	140	6	6
28	bis(2,2,6,6-tetramethylpiperidin-1-yl)	70	0.01	8
	disulfide methacrylate (BiTEMPS			
	methacrylate)			

$\begin{array}{ c c c c c } \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	
29Polyimine-metal complex14013.5	
31 acid-anhydride bond exchange 100 0.005 3.5 $ \begin{array}{c} $	
32 vinylogous urethane (block vitrimer) 140 0.005 0.6	
36 Dihydrazone 150 1 10	
38 silyl ether 80 0.002 1.75	
39 asymmetric acetal 120 1 9	
$\begin{array}{ c c c c c } 40 & Azine & 140 & 1 & 65 \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	
41 Hinded urea bonds 150 0.05 17	

Solvent	Swelling ratio (%)	
DMF	114.65	
THF	118.21	
MeCN	103.82	
DMSO	106.46	
NaOH	104.76	
H ₂ O	103.54	
Tol	115.07	
DMAc	122.95	
CH₃OH	114.57	
EtOH	114.55	
HCI	102.21	
1% H ₂ O ₂	102.54	

Table S4. Swelling ratio of A-PU $_{1,2}$ in various solvents for a month.

Movie S1. The joints adhered by $A-PU_{1,2}$ can bear a load of 80 kg at room temperature.