Supporting Information

Microstructural Engineering of Hydrated Vanadium Pentoxide for Boosted

Zinc Ion Thermoelectrochemical Cells

Zhiwei Li, Yinghong Xu, Langyuan Wu, Hui Dou, Xiaogang Zhang*

*Corresponding author. Email: azhangxg@nuaa.edu.cn (X.Z.)

Fig. S1. SEM image of VOMS.

Fig. S2. Nitrogen adsorption-desorption isotherms of VOMS and VOMF samples.

Fig. S3. Voltage profile during electrochemically self-charging.

Fig. S4. The structure and performance of VOMF@CC. (a) SEM image. (b) XRD pattern. (c) Thermal charging behavior. (d) Seebeck coefficient.

Fig. S5. Temperature dependence of the open-circuit voltage for various systems.

Fig. S6. (a) XRD pattern. (b) GITT curves and (c) calculated Zn^{2+} diffusion coefficients during charge and discharge process for VOMF-400 sample.

Fig. S7. Electrochemical performances of VOMF based zinc ion batteries. (a) GCD curves at various current densities. (b) Rate capability. (c) Long-term cyclic stability at 10 A g^{-1} .

Fig. S8. (a) The electron density difference map after Zn^{2+} intercalated into V_2O_5 and (b) The optimized migration path of Zn^{2+} in V_2O_5 .