Supporting information

Enabling a compatible Li/garnet interface via a multifunctional additive of sulfur
Jie Wang,†ab Saisai Zhang,†a Shaokang Song, a Jintao Liu, a Zhaolin Li ab and Hailei Zhao *ab

a School of Materials Science and Engineering, University of Science and Technology
Beijing, Beijing 100083, China
b Beijing Municipal Key Lab of Advanced Energy Materials and Technologies,
Beijing 100083, China

*Corresponding author: hlzhao@ustb.edu.cn
† These authors contributed equally to this work.

Fig. S1 XRD pattern of the synthesized LLZTO electrolyte.

Fig. S2 Cross-section FESEM image of the LLZTO electrolyte.
Fig. S3 The surface FESEM images of (a) LS5 and (b) LS20.

Fig. S4 (a, b) FESEM images of the cross-section of the LS10 electrode and the corresponding EDS mapping analysis on the different marked areas in the LS10|LLZTO|LS10 symmetric cell.
Fig. S5 Calculated mutual reaction energy between \(\text{Li}_2\text{S} \)/pure Li and garnet LLZO electrolyte.

Fig. S6 EIS plots of the LS10|LLZTO|LS10 symmetric cell after different cycles.
Fig. S7 The cross-sectional FESEM image of the LS10|LLZTO|LS10 symmetric cell after cycling at the current density of 0.2 mA cm\(^{-2}\): (a) low magnification and (b) high magnification.

Fig. S8 Cycling performance of the LS10|LLZTO|LS10 symmetric cell at the current density of 0.2 mA cm\(^{-2}\) and capacity of 1 mAh cm\(^{-2}\).
Fig. S9 Galvanostatic Li plating/stripping curves of symmetric Li|LLZTO|Li cells at room temperature.

Fig. S10 Enlarged Li plating/stripping curves of symmetric LS10|LLZTO|LS10 cells at different current densities.

Fig. S11 Schematic illustration of the charge transfer at the interface for the Li|LLZTO|Li symmetric cell.
Fig. S12 (a) Stepped rate-capability of the fabricated Li|LLZTO|LiFePO$_4$ cell and (b) the corresponding charge/discharge curves at the different current densities.

Fig. S13 Discharge/charge curves of the LS10|LLZTO|LiFePO$_4$ cell at the different current densities.
Table S1 The detailed first-principles calculation results

<table>
<thead>
<tr>
<th>Reactants</th>
<th>Ratio of LLZO</th>
<th>Mutual reaction energy(eV/atom)</th>
<th>Phase equilibria</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLZO+Li$_2$S</td>
<td>100%</td>
<td>0</td>
<td>Li$_7$La$_2$Zr2O${12}$</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>-0.00038</td>
<td>La$_2$SO$_2$,Li$_2$O,La$_6$Zr$_2$O$_7$</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0</td>
<td>Li$_2$S</td>
</tr>
<tr>
<td>LLZO+Li</td>
<td>100%</td>
<td>0</td>
<td>Li$_7$La$_2$Zr2O${12}$</td>
</tr>
<tr>
<td></td>
<td>12.5%</td>
<td>-0.006</td>
<td>Li$_2$O,La$_2$O$_3$,Zr$_4$O</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>0</td>
<td>Li</td>
</tr>
</tbody>
</table>