Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting information

Enabling a compatible Li/garnet interface via a multifunctional additive of sulfur

Jie Wang,†^{ab} Saisai Zhang,†^a Shaokang Song, ^a Jintao Liu, ^a Zhaolin Li ^{ab} and Hailei

Zhao *ab

^a School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

^b Beijing Municipal Key Lab of Advanced Energy Materials and Technologies, Beijing 100083, China

*Corresponding author: hlzhao@ustb.edu.cn

[†] These authors contributed equally to this work.

Fig. S1 XRD pattern of the synthesized LLZTO electrolyte.

Fig. S2 Cross-section FESEM image of the LLZTO electrolyte.

Fig. S3 The surface FESEM images of (a) LS5 and (b) LS20.

Fig. S4 (a, b) FESEM images of the cross-section of the LS10 electrode and the corresponding EDS mapping analysis on the different marked areas in the LS10|LLZTO|LS10 symmetric cell.

Fig. S5 Calculated mutual reaction energy between Li_2S /pure Li and garnet LLZO electrolyte.

Fig. S6 EIS plots of the LS10|LLZTO|LS10 symmetric cell after different cycles.

Fig. S7 The cross-sectional FESEM image of the LS10|LLZTO|LS10 symmetric cell after cycling at the current density of 0.2 mA cm⁻²: (a) low magnification and (b) high magnification.

Fig. S8 Cycling performance of the LS10|LLZTO|LS10 symmetric cell at the current density of 0.2 mA cm⁻² and capacity of 1 mAh cm⁻².

Fig. S9 Galvanostatic Li plating/stripping curves of symmetric Li|LLZTO|Li cells at room temperature.

Fig. S10 Enlarged Li plating/stripping curves of symmetric LS10|LLZTO|LS10 cells at different current densities.

Fig. S11 Schematic illustration of the charge transfer at the interface for the Li|LLZTO|Li symmetric cell.

Fig. S12 (a) Stepped rate-capability of the fabricated Li|LLZTO|LiFePO₄ cell and (b) the corresponding charge/discharge curves at the different current densities.

Fig. S13 Discharge/charge curves of the LS10|LLZTO|LiFePO₄ cell at the different current densities.

Reactants	Ratio of LLZO	Mutual reaction energy(eV/atom)	Phase equilibria
LLZO+Li ₂ S	100%	0	$Li_7La_3Zr_2O_{12}$
	40%	-0.00038	La ₂ SO ₂ ,Li ₂ O,Li ₆ Zr ₂ O ₇
	0%	0	Li ₂ S
LLZO+Li	100%	0	$Li_7La_3Zr_2O_{12}$
	12.5%	-0.006	Li ₂ O,La ₂ O ₃ ,Zr ₄ O
	0%	0	Li

Table S1 The detailed first-principles calculation results