Electronic Supporting Information (ESI)

In-depth structural characterization of the influence of Li⁺ excess on spherical, Co-free layered LiMn_{0.5}Ni_{0.5}O₂ cathode material using correlative Raman-SEM microscopy

Florian Klein,^a Claudia Pfeifer,^a Philipp Scheitenberger,^b Lukas Pfeiffer,^a Dominik Zimmer,^c Margret Wohlfahrt-Mehrens,^a Mika Lindén^{*,b} and Peter Axmann^{*,a}

^aZentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW), Helmholtzstrasse 8, D-89081 Ulm (Germany). e-mail: peter.axmann@zsw-bw.de

^bInstitute for Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm (Germany). e-mail: mika.linden@zsw-bw.de

^cOxford Instruments GmbH, Borsigstr. 15A, 65205 Wiesbaden (Germany)

Figure S1. SEM images of the $(Mn_{0.5}Ni_{0.5})(OH)_2$ precursor: a) top view of spherical particle morphology and b) particle cross-section of dense spheres.

Figure S2. XRD pattern of Li_{1.00} (blue), Li_{1.07} (orange), Li_{1.10} (red) and Li_{1.16} (green): a) overview and b) details of selected reflections.

Table S1. Calculated Rietveld refinement parameters based on the structural model for $LiMn_{0.5}Ni_{0.5}O_2$ of Bréger *et al.*¹: space group, lattice parameters, Cell Volume *V*, cation occupancies, atom coordinate *z* of the oxide ions, the estimated crystallite size (integral breadth) and the *R* factor.

	Li _{1.00}	Li _{1.07}	Li _{1.10}	Li _{1.16}
Space group	R3m (166)	R3m (166)	R3m (166)	R3m (166)
a / Å	2.890	2.880	2.874	2.867
c / Å	14.306	14.289	14.272	14.255
V / ų	103.5	102.6	102.1	101.5
Li _{Li} (3a: 0, 0, 0)	0.91	0.92	0.93	0.94
Ni _{Li} (3a: 0, 0, 0)	0.09	0.08	0.07	0.06
Li _{тм} (3b: 0, 0, 1/2)	0.09	0.08	0.07	0.06
Мп _™ (3b: 0, 0, 1/2)	0.50	0.50	0.50	0.50
Ni _{TM} (3b: 0, 0, 1/2)	0.41	0.42	0.43	0.44
z [O (6c: 0, 0, z)]	0.242	0.243	0.243	0.243
Crystallite Size / nm	149	385	284	293
R _{wp} / %	5.8	5.9	4.6	5.3

Figure S3. XRD pattern (black) of a) $Li_{1.00}$, b) $Li_{1.07}$, c) $Li_{1.10}$ and d) $Li_{1.16}$ in comparison with the calculated pattern from Rietveld refinement (red) and the difference between both (blue).

Figure S4. Li/Ni disorder as a function of the amount of excess Li⁺ in the structure determined via Rietveld refinement.

Figure S5. Overview SEM images of $Li_{1.16}$ particle cross section showing an irregular morphology and the local phase separation.

Figure S6. EBSD results of Li_{1.16}: EDX mapping of a) Ni and b) Mn, orientation distribution maps with inverse pole figure color key in direction c) Z, d) X and e) Y with respect to the acquisition system. The specimen is located in the X-Y plane and is oriented perpendicularly to the Z-axis. Furthermore, g) the inverse pole figures for the three directions X, Y and Z and h) pol figures for the families {0001}, {10-10} and {11-20} indicating both no significant preferred crystallographic orientation of the crystallites. This is confirmed by f) the correlation of the Mackenzie plot (grey) with the random pair distribution (orange) of 99 % and an M-index of 0.1, where a M-index of 1 represents a single crystal and a value of 0 represents a purely random orientation distribution.²

Figure S7. Histograms of the fitted position of the Raman vibration band at approximately 600 cm⁻¹ of $Li_{1.00}$ (blue), $Li_{1.07}$ (orange), $Li_{1.10}$ (red) and $Li_{1.07}$ (green).

Figure S8. Long-term cycling performance of $Li_{1.07}$ and $Li_{1.10}$ at RT (2.5 - 4.7 V): a) Specific discharge capacities and b) discharge voltage profiles of cycles with lower discharge current (12 mA g⁻¹). The small fluctuation of the data points in a) is related to slight variations of the room temperature.

Figure S9. Electrochemical analysis of the 1^{st} cycle specific capacity behavior in different voltage ranges: OCV – 4.4 V (black) and 4.4 – 4.7 V (red) as well as the irreversible initial capacity loss. The given numbers are mean values of three cells.

Figure S10. Comparison of the discharge capacity development during cycling (12 mA g^{-1}) of Li_{1.00} using different upper cut-off voltages: 4.3 V (blue), 4.5 V (yellow) and 4.7 V (green).

Figure S11. Electrochemical characterization of $Li_{1.00}$, $Li_{1.07}$, $Li_{1.10}$ and $Li_{1.16}$ during the initial cycles (12 mA g⁻¹): supplementary dQ/dV plots of the cycling data presented in Figure 9.

References

- 1 J. Bréger, Y. S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. Shao-Horn, G. Ceder and C. P. Grey, *Chem. Mater.*, 2006, **18**, 4768.
- 2 P. Skemer, I. Katayama, Z. Jiang and S. Karato, *Tectonophysics*, 2005, **411**, 157.