Electronic Supplementary Information

Fabrication of dual-functional electrochromic smart window based on lowcost hybrid transparent electrode coated with a solution-processable polymer

Subash Cherumannil Karumuthil^a, Mukhesh K. Ganesha^{a,⊥}, Indrajit Mondal^{b,⊥}, Ashutosh K. Singh^{a*}, and Giridhar U. Kulkarni^{a,b*}

^aCentre for Nano and Soft Matter Sciences, Bangalore-562162, India.

^bChemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.

* Corresponding authors E-mail addresses: Prof. Giridhar U. Kulkarni (gukulk@gmail.com, <u>kulkarni@jncasr.ac.in</u>) Ashutosh K. Singh (<u>ashuvishen@gmail.com</u>, <u>aksingh@cens.res.in</u>)

⊥These authors contributed equally.

TABLE OF CONTENTS

Supplementary information	Details Page no.	
S1	Energy dispersive spectroscopy elemental analysis of synthesized PMOANI	3
S2	Solvent selection for dispersing PMOANI	3
S3	Photographs of spin coated PMOANI on electrode at lower acceleration	4
S4	Optimization of coating parameters and concentration of PMOANI	4
S5	Schematic of fabrication steps of electrode making	5
S6	FESEM images of PMOANI coating	5
S7	Cyclic stability of 2.5% PMOANI on different electrodes	6
S8	Characterization of PMOANI coated ITO-60 nm/Al-mesh before and after cyclic stability test	7
S9	X-ray photoelectron spectroscopy of PMOANI coated ITO-60 nm/Al-mesh before and after cyclic stability test	8
S10	Video showing dual functionality of EES device	9
S11	Comparative study on electrochromic and energy storage performance of reported devices	9
	Supplementary information references	10

Figure S1: Energy dispersive spectroscopy elemental analysis of synthesized PMOANI.

Supplementary information - S2

Figure S2: Solvent selection for dispersing PMOANI: (a) photographs of dispersion in different solvents, (b) - (e) FESEM images of PMOANI films dispersed in different solvents.

Figure S3: Photographs showing the sagginess of film at edges of spin coated PMOANI on electrode at lower acceleration ($< 300 \text{ rpm/s}^2$).

Supplementary information - S4

Figure S4: (a) Cyclic voltammogram of PMOANI coated on ITO using 500_500 ((RPM_ acceleration)) coating parameter. (b) bleached (B) and coloured (C) state transmittance spectra of the films coated at different spin coating recipe (I) 1000_150, (II) 1000_100, (III) 1000_40, (IV) 500_500,(V) 500_150. (c) the corresponding modulation plot at 700 nm (d) transmittance modulation by the films prepared using different concentrations of PMOANI at 700 nm.

Figure S5: Schematic of fabrication steps for making PMOANI electrode on ITO/Al mesh transparent conducting electrode.

Supplementary information - S6

Figure S6: FESEM images of PMOANI coating on ITO (60 nm)/Al-mesh TCE in different layers (high magnification images are shown in inset) (a) single layer, (b) double layer, (c) triple layer.

Figure S7: Cyclic stability of optimized PMOANI on different electrodes for 500 cycles when switched between -0.5 to +0.8 V for 10 s per step (percentage retention is also mentioned): (a) ITO (280 nm), (b) ITO (30 nm)/Al-mesh TCE, (c) ITO (60 nm)/Al-mesh TCE, (d) ITO (100 nm)/Al-mesh TCE.

Supplementary information - S8

Figure S8: Characterization of PMOANI coated ITO-60 nm/Al-mesh before and after cyclic stability test (a) EIS spectra, high-frequency spectra in the inset, (b) Raman spectra, (c) FESEM image before cycling test, (d) FESEM image after the cycling test.

Figure S9: X-ray photoelectron spectroscopy of PMOANI coated ITO-60 nm/Al-mesh before and after cyclic stability test

Video showing dual functionality of EES device – Supplementary movie 1.

Supplementary movie 1 shows the dual functionality of the fabricated EES device of ~15 cm² size. The movie shows the charging of the EES device for 2 min and the colour of the device was changed to blue from transparent. After removing the charging terminal, the EES device was connected to a liquid crystal timer display (operational voltage: 1.2 V) and the timer display started glowing. The timer display shows 1 h : 02 min (1:02). The EES device was powering the display for more than 20 min, and the fading of the display started by showing 1 h: 25 min (1:25). While discharging, blue colour was slowly fading and approaching to transparency. The presented supplementary movie was 32x (32 times) fast-forwarded.

Supplementary information - S11

Active materials	Arial	Optical	Supplementary
	capacitance	modulation (%)	information
	$(mF cm^{-2})$		reference number
Poly aniline	0.017	30	1
Poly aniline /Tungsten oxide	0.025	35.3	2
Tungsten oxide	3.414	4.52	3
/graphene/Polyaniline			
PANI-functionalized Nickel	1.1	40	4
oxide			
Polyaniline/ hybrid graphene/	17.3	40.1	5
Copper sulfide			
Polyimide/indacenodithiophene	6.2	21.84	6
Poly(indole-6-carboxylic acid)	16.2	43	7
Vertical Gold Nanowires/	11.76	-	8
Polyaniline			
Poly(3,4-	~10	-	9
ethylenedioxythiophene)			
Poly(o-methoxyaniline)/ hybrid	~ 8	57	This work
transparent conducting electrode			

Comparative study on electrochromic and energy storage performance of reported devices

Supplementary information references

- 1. K. Wang, H. p. Wu, Y. N. Meng, Y. J. Zhang and Z. X. Wei, *Energy Environ. Sci.*, 2012, **5**, 8384–8389.
- 2. H. G. Wei, X. R. Yan, S. J. Wu, Z. P. Luo, S. Y. Wei and Z. H. Guo, *J. Phys. Chem. C*, 2012, **116**, 25052–25064.
- 3. H. L. Lyu, *Polymers*, 2020, **12**, 49.
- 4. M. Jamdegni and A. Kaur, *Electrochim. Acta*, 2020, **331**, 135359.
- P. J. Yao, S. Y. Xie, M. D. Ye, R. Yu, Q. Liu, D. D. Yan, W. W. Cai, W. X. Guo and X. Y. Liu, *RSC Adv.*, 2017, 7, 29088–29095.
- 6. Y. Sun, X. Zhao, G. Q. Zhu, M. Li, X. Q. Zhang, H. Yang and B. P. Lin, *Electrochim. Acta*, 2020, **333**, 135495.
- 7. J. J. Li, Q. F. Guo, Y. Lu and G. M. Nie, Eur. Polym. J., 2019, 113, 29-35.
- T. An, Y. Ling, S. Gong, B. Zhu, Y. Zhao, D. Dong, L. W. Yap, Y. Wang and W. Cheng, *Adv. Mater. Technol.*, 2019, 4, 1800473.
- 9. A. M.O"sterholm, D. E. Shen, A. L. Dyer and J. R. Reynolds, ACS Appl. Mater. Interfaces, 2013, 5, 13432–13440.