Supplementary information

Fast divalent conduction in *M*B₁₂H₁₂–12H₂O (*M* = Zn, Mg) complex hydrides: effects of rapid crystal water exchange and application for solid-state electrolyte

Kazuaki Kisu,^{a*} Arunkumar Dorai,^{a,b} Sangryun Kim,^c Riku Hamada,^a Akichika Kumatani,^{d,e,f,g}

Yoshiko Horiguchi,^d Ryuhei Sato,^d Kartik Sau,^d Shigeyuki Takagi,^a and Shin-ichi Orimo^{a,d*}

- a. Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan, E-mail: kazuaki.kisu.b2@tohoku.ac.jp
- b. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- c. Graduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST),
 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- d. Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- e. WPI-International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
- f. Graduate School of Environmental Studies, Tohoku University, Sendai 980-856, Japan.
- g. Center for Science and Innovation in Spintronics (CSIS), Tohoku University, Sendai 980-8577, Japan.

E-mail: kazuaki.kisu.b2@tohoku.ac.jp; shin-ichi.orimo.a6@tohoku.ac.jp

Figure S1. (a) XRD patterns for $ZnB_{12}H_{12}$ -12H₂O, (b) $ZnB_{12}H_{12}$ anhydrous, (c) rehydrated $ZnB_{12}H_{12}$ anhydrous.

Figure S2. (a) Raman spectra for $ZnB_{12}H_{12}-12H_2O$, (b) $ZnB_{12}H_{12}$ anhydrous, (c) rehydrated anhydrous $ZnB_{12}H_{12}$.

Figure S3. $ZnB_{12}H_{12}$ –12 H_2O sample photos without melting after ⁶⁷Zn NMR measurements.

Figure S4. (a) Nyquist plots recorded for $ZnB_{12}H_{12}-12H_2O$ between 30 and 60 °C. (b) Nyquist plot and simulated curve for $ZnB_{12}H_{12}-12H_2O$. The inset shows the equivalent circuit used for fitting.

Figure S5. Ionic conductivity of $ZnB_{12}H_{12}$ –12H₂O obtained by impedance spectroscopy. Black, orange, and blue circles represent the results of the first, second, and third runs, respectively.

Figure S6. Cyclic voltammogram of $Zn | ZnB_{12}H_{12}-12H_2O |$ Mo recorded at a temperature of 30 °C and a scan rate of 50 mV s⁻¹ within a voltage range of -0.8 to 1.0 V (*vs.* Zn²⁺/Zn).

Figure S7. Cyclic voltammograms of $Zn | ZnB_{12}H_{12}-12H_2O |$ Mo at 25 °C, scan rate of 20 mV s⁻¹, and voltage range of -1.0 to 1.0 V (vs. Zn^{2+}/Zn) via a microdroplet created with the probe of scanning electrochemical cell microscopy.

Figure S8. Linear sweep voltammograms of $Zn/ZnB_{12}H_{12}-12H_2O/Mo$ at 50 °C at a scan rate of 1 mV s⁻¹ and at a scan range of -0.5 to 2.5 V (vs. Zn^{2+}/Zn).

Figure S9. Effects of cycling on the discharge/charge capacities and coulombic efficiency of the Zn-PTO/KB battery.

Figure S10. (a) XRD patterns for $MgB_{12}H_{12} nH_2O$ (n = 12, 6, 3). (b) Raman spectra for $MgB_{12}H_{12} nH_2O$ (n = 12, 6, 3).

Fig. S11. (a) Nyquist plots for $MgB_{12}H_{12}$ –12H₂O measured between 30 and 60 °C with applied frequencies of 4 Hz to 1 MHz. (b) Ionic conductivity of $MgB_{12}H_{12}$ –12H₂O obtained by impedance spectroscopy. Black, orange, and blue circles represent the results of the first, second, and third runs, respectively.