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Figure S1. (a) XRD patterns for ZnB12H12-12H2O, (b) ZnB12H12 anhydrous, (c) rehydrated 

ZnB12H12 anhydrous. 
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Figure S2. (a) Raman spectra for ZnB12H12–12H2O, (b) ZnB12H12 anhydrous, (c) rehydrated 

anhydrous ZnB12H12. 
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Figure S3. ZnB12H12–12H2O sample photos without melting after 67Zn NMR measurements. 
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Figure S4. (a) Nyquist plots recorded for ZnB12H12–12H2O between 30 and 60 °C. (b) 

Nyquist plot and simulated curve for ZnB12H12–12H2O. The inset shows the equivalent circuit 

used for fitting. 
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Figure S5. Ionic conductivity of ZnB12H12–12H2O obtained by impedance spectroscopy. 

Black, orange, and blue circles represent the results of the first, second, and third runs, 

respectively. 
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Figure S6. Cyclic voltammogram of Zn | ZnB12H12–12H2O | Mo recorded at a temperature of 

30 °C and a scan rate of 50 mV s−1 within a voltage range of −0.8 to 1.0 V (vs. Zn2+/Zn). 
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Figure S7. Cyclic voltammograms of Zn | ZnB12H12-12H2O | Mo at 25 °C, scan rate of 20 mV 

s−1, and voltage range of −1.0 to 1.0 V (vs. Zn2+/Zn) via a microdroplet created with the probe 

of scanning electrochemical cell microscopy. 
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Figure S8. Linear sweep voltammograms of Zn/ZnB12H12–12H2O/Mo at 50 °C at a scan rate 

of 1 mV s−1 and at a scan range of −0.5 to 2.5 V (vs. Zn2+/Zn). 
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Figure S9. Effects of cycling on the discharge/charge capacities and coulombic efficiency of 

the Zn-PTO/KB battery. 
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Figure S10. (a) XRD patterns for MgB12H12 nH2O (n = 12, 6, 3). (b) Raman spectra for 

MgB12H12 nH2O (n = 12, 6, 3). 
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Fig. S11. (a) Nyquist plots for MgB12H12–12H2O measured between 30 and 60 °C with 

applied frequencies of 4 Hz to 1 MHz. (b) Ionic conductivity of MgB12H12–12H2O obtained 

by impedance spectroscopy. Black, orange, and blue circles represent the results of the first, 

second, and third runs, respectively. 

 

 

 

 


