Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Support Information

High output characteristic Ag₂Se/Nylon self-supporting composite

films for wearable photo-thermoelectrical generators

Zhen-yu Yang,^{§a} Xin-zheng Jin,^{§a} Wen-yan Wang,^a Chen-hui Huang,^a Yan-zhou Lei,^b Yong Wang^{*a}

Figure S1. (a) Low and (b) high magnification surface FESEM images of commercial nylon mesh.

^a School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China. Phone: +86 28 87603042; Email: <u>yongwang1976@swjtu.edu.cn</u>

^b Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China

[§] Co-first author. ORCID: Yong Wang: 0000-0003-0655-7507

Figure S2. Variation of silver loading in the silver mirror reaction with (a) reaction time and (b) numbers.

Figure S3. The morphologies of (a) 15Ag/85Nylon, (b) 35Ag/65Nylon, (c) 50Ag/50Nylon, (d) 60Ag/40Nylon, (e) 75Ag/25Nylon and (f) 90Ag/10Nylon. The EDS patterns of (g) 15Ag/85Nylon, (h) 35Ag/65Nylon, (i) 50Ag/50Nylon, (j) 60Ag/40Nylon, (k) 75Ag/25Nylon and (l) 90Ag/10Nylon.

Figure S4. The XRD patterns of the nylon mesh and the prepared Ag/Nylon composite films with different contents of sliver.

Figure S5. High magnification surface FESEM images of (a) 15Ag/85Nylon, (b) 35Ag/65Nylon, (c) 50Ag/50Nylon, (d) 60Ag/40Nylon, (e) 75Ag/25Nylon, (f) 90Ag/10Nylon, (g) $20Ag_2Se/80Nylon$, (h) $40Ag_2Se/60Nylon$, (i) $60Ag_2Se/40Nylon$, (j) $70Ag_2Se/30Nylon$, (k) $80Ag_2Se/20Nylon$ and (l) $90Ag_2Se/10Nylon$.

Figure S6. The XRD patterns of the nylon mesh and the prepared 20Ag₂Se/80Nylon composite film.

Figure S7. The electrical conductivity, Seebeck coefficient and power factor of Ag₂Se/Nylon composite films with different loadings.

Figure S8. Low magnification surface FESEM images of (a) $20Ag_2Se/80Nylon$, (b) $40Ag_2Se/60Nylon$, (c) $60Ag_2Se/40Nylon$, (d) $70Ag_2Se/30Nylon$, (e) $80Ag_2Se/20Nylon$ and (f) $90Ag_2Se/10Nylon$. Where the place marked by the yellow dotted line occurs obvious shedding phenomenon, the thicker Ag_2Se layers present in the higher content samples make the shedding of a small amount of Ag_2Se not lead to bare leakage, so the obvious

shedding phenomenon is not easily observed.

Figure S9. (a) High and (b) low magnification surface morphologies of nylon mesh after hot-pressing.

Figure S10. The morphologies of Ag₂Se grains in Ag₂Se/Nylon composite films after hot pressing. Figures a-f show 20Ag₂Se/80Nylon-h, 40Ag₂Se/60Nylon-h, 60Ag₂Se/40Nylon-h, 70Ag₂Se/30Nylon-h, 80Ag₂Se/20Nylon-h and 90Ag₂Se/10Nylon-h in order.

Figure S11. The cross-sectional FESEM images of $Ag_2Se/Nylon$ composite films after hot pressing. Figures a-f also show composite films with Ag_2Se contents of (a) 20wt%, (b) 40wt%, (c) 60wt%, (d) 70wt%, (e) 80wt% and (f) 90wt%.

(a ₁)	(a ₂) Ag	(a ₃) 5	(d ₁)	(d ₂) Ag	(d ₃) Sc
= 10 um*	10 um	10 un	10 um	10 um	10 um
(b ₁)	(b ₂) Ag	(b ₃)	e (e _l)	(e ₂) Ag	(e ₃) Se
		1 Carlo Carlo Carlo	- for		
<u>10 µm</u>	10 µm		$1 \qquad 10 \mu m$	10 μm	10 µm
(c ₁).	(c ₂) Ag	(c ₃) 8	\mathbf{e} (\mathbf{f}_{l})	(f ₂) Ag	(f ₃) Se
		M. Shake			
10	(2) 自己的问题,我们还有这些资源的问题,我们就能够不可能。				

Figure S12. The EDS patterns of (a) $20Ag_2Se/80Nylon-h$, (b) $40Ag_2Se/60Nylon-h$, (c) $60Ag_2Se/40Nylon-h$, (d) $70Ag_2Se/30Nylon-h$, (e) $80Ag_2Se/20Nylon-h$ and (f) $90Ag_2Se/10Nylon-h$.

Figure S13. (a) XPS survey spectrum, and high-resolution Ag 3d (b) and Se 3d (c) core level spectra of the $80Ag_2Se/20Nylon-h$.

Figure S14. The ratio of the power factor of the composite films after hot-pressing to the composites before hot-pressing. PF_0 and PF_h are the power factors of the Ag₂Se/Nylon composite film before and after hot-pressing respectively.

Sample	Density (g cm ⁻³)	Specific heat capacity (J g ⁻¹ K ⁻¹)	Out-of-plane thermal diffusivity (mm ² s ⁻¹)	In-plane thermal diffusivity (mm ² s ⁻¹)
20Ag ₂ Se/80Nylon-h	1.36	1.048	0.130 ± 0.008	$0.538 {\pm} 0.007$
40Ag ₂ Se/60Nylon-h	1.61	0.930	0.129±0.030	0.545±0.014
60Ag ₂ Se/40Nylon-h	1.83	0.834	0.131 ± 0.005	0.538±0.010
70Ag ₂ Se/30Nylon-h	2.50	0.627	0.133±0.017	0.545±0.026
80Ag ₂ Se/20Nylon-h	3.41	0.458	0.135±0.001	0.534±0.007
90Ag ₂ Se/10Nylon-h	4.93	0.317	0.168±0.001	0.519±0.003

Tables S1. The density, specific heat capacity, out-of-plane and in-plane thermal diffusivity of the $xAg_2Se/yNylon-h$ composite films obtained from the measurements.

Figure S15. IR heat maps of the 80Ag₂Se/20Nylon-h when irradiated by 180 mW cm⁻² NIR light. The recording time of heat maps is 0 s, 5 s, 15 s and 30 s respectively.

Figure S16. The time required for the PTEG to reach 90% of the maximum open-circuit output voltage with different power light radiation.

Index	Composite	Light source mode	The number of legs	Power densities (nW cm ⁻²)	Ref
1	$Bi_2Te_{2.7}Se_{0.3}/Sb_2Te_3$	20 mW cm ⁻² (NIR, 808 nm)	10	502.78	1
2	PPy/Ag ₂ Se	100 mW cm ⁻² (NIR, 808 nm)	1	600.00	2
3	PEDOT:PSS/HCNTs	166.01 mW cm ⁻² (NIR, 808 nm)	3	2.83	3
4	PPy/HCNTs	400 mW cm ⁻² (NIR, 808 nm)	1	0.0446	4
5	Mo ₂ S/PU-PEDOT:PSS/Te NWs	2625 mW cm ⁻² (NIR, 808 nm)	1	0.0432	5
6	Ag ₂ Se/Nylon	100 mW cm ⁻² (NIR, 808 nm)	4	3265.63	Our work

Tables S2. Comparison of our work with the reported power densities of PTEGs with different typ	pes.
---	------

Figure S17. (a) Temperature changes of the 80Ag₂Se/20Nylon under different intensities of visible light irradiation. (b) The cyclic open-circuit voltage response of the PTEG under 1S visible light irradiation. (c) The output voltage and (d) power of the PTEG as a function of current at different radiation power of visible light.

Reference

- 1 X. Z. Jin, H. Li, Y. Wang, Z. Y. Yang, X. D. Qi, J. H. Yang and Y. Wang, *ACS Appl. Mater. Interfaces.*, 2022, 14, 27083-27095.
- 2 D. L. Wen, X. Liu, J. F. Bao, G. K. Li, T. Feng, F. Zhang, D. Liu and X. S. Zhang, *ACS Appl. Mater. Interfaces.*, 2021, **13**, 21401-21410.
- 3 X. Z. Jin, X. D. Qi, Y. Wang, J. H. Yang, H. Li, Z. W. Zhou and Y. Wang, *ACS Appl. Mater. Interfaces.*, 2021, **13**, 8808-8822.
- 4 Z. Y. Yang, X. Z. Jin, C. H. Huang, Y. Z. Lei and Y. Wang, *ACS Appl. Mater. Interfaces.*, 2022, 14, 33370-33382.
- 5 M. He, Y.-J. Lin, C.-M. Chiu, W. Yang, B. Zhang, D. Yun, Y. Xie and Z.-H. Lin, *Nano Energy*, 2018, 49, 588-595.