Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary material

CoFe alloy nanoparticles encapsulated in 3D honeycomb-like N-doped graphitic carbon framework for photocatalytic CO₂ reduction

Lang He^a, Wenyuan Zhang^b, Fei Lv^a, Xirui Kong^a Yayun Zheng^a, Yi Song^a*, Yan Zhao^{a,c}*

^a The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China.

^b School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin,

150080, P. R. China

^c State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Hubei, Wuhan 430070, People's Republic of China

* Corresponding author

E-mail: yi.song@whu.edu.cn (Yi Song); yan2000@whut.edu.cn (Y. Zhao)

Time-resolved transient PL measurement

Fluorescence lifetime and steady-state spectrometer (FLs980, Edinburgh Instruments, UK) was used to test the steady-state lifetime photoluminescence (PL) spectrum and time-resolved photoluminescence (TRPL) spectrum, and the excitation wavelength was 384 nm. The emission decay data were fitted to a double-exponential model and the emission decay behavior is deduced through Eq. (1)

$$\tau_{avrg.} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{1}$$

Where τ and A are the decay time and the relative magnitude of components, respectively, and τ_{avrg} is the intensity-averaged lifetime used for an overall comparison. The fitting results show the fast decay component (τ_1 and A_1) and the minority-slow component (τ_2 and A_2), decaying from the free excited states and the bound excited states, respectively.

Photoelectrochemistry measurement

The electrochemical measurements were performed on an electrochemical workstation (CHI760C, Chinstruments, China) using a three-electrode system. A Pt foil was used as counter electrode, the Ag/AgCl electrode was used as reference electrode, and the FTO conductive glass (1×1cm), whose conductive side was coated with thin sample film, was used as the working electrode. 0.5 M Na₂SO₄ solution was used as electrolyte.

Fig. S1 Models for (a) N-GC, (b) CoFe (111) lattice plane and (c) Optimized CoFe/N-GC structure model.

Fig. S2 (a-d) The N₂ adsorption desorption <u>isotherms</u> and <u>pore size</u> <u>distribution</u> (inset) of CoFe/N-GC-600, CoFe/N-GC-700 and CoFe/N-GC-900 and CoFe/N-GC-1000 respectively.

Fig. S3 The SEM images of Co²⁺, Fe³⁺-PVP precursor, CoFe/N-GC-600 (b, c), CoFe/N-GC-700 (d, g), CoFe/N-GC-900 (e, h) and CoFe/N-GC-1000 (f, i).

Fig. S4 (a-d) Low magnification TEM image of CoFe/N-GC-800

Fig. S5 EDS spectrum of CoFe/N-GC-600, CoFe/N-GC-700, CoFe/N-GC-

800, CoFe/N-GC-900 and CoFe/N-GC-1000.

Fig. S6 The XPS survey spectra of CoFe/N-GC-800.

Fig. S7 Transient photocurrent responses of the obtained photocatalysts under 300 W simulated solar Xe arc lamp in 0.5 M Na₂SO₄ aqueous solution.

Fig. S8 UPS of N-GC-800 and CoFe-800 composite.

Fig. S9 The differential charge density of the N-GC and CoFe (111).

Fig. S10 (a) Comparison of gas chromatograms of the photocatalytic CO2RR of gaseous products on the CoFe/N-GC-800 catalyst under different conditions under 1 h light irradiation. (b) Photocatalytic activity of photocatalysts with different mass ratios calcinated at 800 °C. $(Co(NO_3)_2 \cdot 6H_2O: Fe(NO_3)_2 \cdot 9H_2O = 3:1, 2:1, 1:1, 1:2 \text{ and } 1:3)$

Fig. S11 Simulated CO₂ adsorption on the optimized structural (a) N-GC,(b) CoFe (111) lattice plane and (c) CoFe/N-GC.

Sample	τ_1 (ns)	% percentage	τ_2 (ns)	% percentage	τ _{avrg.} (ns)
CoFe/N-GC-600	0.42	0.63	0.42	0.37	0.42
CoFe/N-GC-700	0.43	0.63	0.43	0.37	0.43
CoFe/N-GC-800	0.32	0.68	0.34	0.32	0.32
CoFe/N-GC-900	0.46	0.63	0.46	0.37	0.46
CoFe/N-GC-1000	0.41	0.65	0.41	0.35	0.41

 Table S1 Fitting parameters for TRPL curves recorded for CoFe/N-GC samples.