High-rate capability and energy density sodium ion full cell enabled by F-doped

Na₂Ti₃O₇ hollow spheres

Du Pan^{a,b,d}, Weixin Chen^c, Shuwei Sun^{a,b}, Xia Lu^c, Xiaolei Wu^{a,b}, Caiyan Yu^{a,b*}, Yong-

Sheng Hu^{d*}, Ying Bai^{a,b*}

aInternational Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of

Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

^bAcademy for Advanced Interdisciplinary Studies Henan University, Kaifeng, 475004, P. R. China.

^cSchool of Materials, Sun Yat-sen University, Guangzhou, 510006, P. R. China.

^dBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences,

Beijing 100190, P. R. China.

E-mail: cyyu@henu.edu.cn (Caiyan Yu); yshu@iphy.ac.cn (Yong-Sheng Hu); ybai@henu.edu.cn (Ying Bai)

Fig. S1. N₂ adsorption isotherms distributions of the NTO HS and F-NTO HS samples.

Fig. S2. EDS spectrum and corresponding element contents (inset) of F-NTO HS.

Fig. S3. CV curves collected under different scan rates (a). Regression relationship between log(scan rate) and log(peak current) (b). Capacitive and diffusion contributions of F-NTO HS at 0.6 mV s⁻¹ (c). Normalized ratio of diffusion and capacitances under different scan rates (d).

Fig. S4. Discharge-charge GITT curves after relaxation for 30 minutes at 0.1 A g⁻¹ of NTO, NTO HS and F-NTO HS (a). E *versus* t profile of the F-NTO HS electrode for a single GITT during discharge process, which is composed of 30 *min*. galvanostatic charge (pluse) at 0.1 A g⁻¹, followed by 30 *min*. relaxation. The iR drop is shown along with the ΔE_{τ} and ΔE_s (b). The corresponding Na⁺ diffusion coefficient (D_{Na}⁺) (c).

The Na⁺ diffusion coefficient can be obtained by the following equation:

$$D = \frac{4}{\pi \tau} \left(\frac{mV_m}{MA} \right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau} \right)^2 \tag{1}$$

Where τ is the relaxation time (s), *m* refers to the mass of active materials, *A* stands for

the geometric area of electrode. V_m and M mean the molar volume and molar mass of active materials, respectively. ΔE_s corresponds to quasi-thermodynamic equilibrium voltage change before and after the current pulse. ΔE_{τ} means the potential change during the current pulse.

Fig. S5. SEM images of NTO HS (a), NTO HS (b) and F-NTO HS (c) anodes after 50 cycles.

Table S1. Electrochemical performances for the as-synthesized electrodes.

Performance		F-NTO HS	NTO HS	NTO BS
	1C	281.3	233.5	154
	2C	237.2	197.3	125.8
	5C	201.1	170.0	111.8
Rate capability	10C	180.2	155.4	103.4
$/ mAh g^{-1}$	20C	166.3	145.8	82.6
	30C	155.5	135.9	71.8
	40C	145.5	122.4	64.7
	50C	135.6	115.3	60.8
Long-term cycling Stability	1000 cycles	67.5	44.3	24.9
/ %	11000 cycles	87.29	47.13	0

Table S2. Electrochemical performance comparison of Na₂Ti₃O₇-based materials.²⁻²⁴

1	±	/		
material	Cycling capacity (mAh g ⁻¹)	Cycle number	current density (mA g ⁻¹)	Ref.
3D Microflowers NTO	100.1	1000	200	1
Hollow NTO	99.7	2000	5000	2
Red blood cell-like NTO@C	75.5	1000	3540	3
NTO@C	62.5	200	500	4
Layered NTO	131.4	1000	1000	5
3D NTO Nanosheet	135.5	1000	1000	6
NTO nanofibre	162.4	1000	708	7
NTO	42	90	1600	8
Layered NTO	181.5	100	600	9
NTO@C	187.2	100	177	10
N-NTO@C	88.9	1555	100	11
NTO@rGO	137.4	500	100	12
NTO	119.2	100	100	13

NTO Nanotube	84.5	10000	1770	14
NTO@C-BP	143.5	400	200	15
NTO	140.0	500	885	16
Double-Shell S-NTO	105.0	12000	8850	17
NTO nanotube/g-C ₃ N ₄ / graphene	104.8	300	2000	18
NTO nanotube	60.5	500	400	19
Fe3O4@Na ₂ Ti ₃ O ₇	172.4	1000	885	20
NTO@N-Doped Carbon	72.9	1000	8850	21
3D NTO	62.6	100	1000	22
This work	138.8	11000	8850	/

|--|

Cycle number –		NTO HS	F-NTO HS		
	$\operatorname{Rsf}/\Omega$	$D_{Na^+}/{ m cm}^2{ m s}^{-1}$	Rsf/Ω	$D_{Na^+}/~\mathrm{cm^2s^{-1}}$	
1 st	50.4	0.78×10^{-10}	42.3	1.88×10^{-10}	
25 th	132.5	0.40×10^{-10}	73.8	1.76×10^{-10}	
50 th	190.2	0.19×10^{-10}	108.4	1.82×10^{-10}	
75 th	290.4	0.11×10^{-10}	145.6	1.95×10^{-10}	
100 th	389.9	0.07×10^{-10}	176.7	1.81×10^{-10}	

Table S4. Bader charge analysis of Ti.

· NO		ΝΤΟ			NTO-F			
1011	NO.	Charge/e	d _{min} /nm	Volume/Å ³	Charge/e-	d _{min} /nm	Volume/Å ³	
	1	2.102393	0.800657	7.829199	2.190750	0.905757	8.102746	
	2	2.102393	0.800657	7.829199	2.190750	0.905757	8.102746	
	3	2.080788	0.842283	7.761505	2.187370	0.838958	8.094408	
	4	2.080788	0.842283	7.761505	2.187370	0.838958	8.094408	
	5	2.102394	0.800657	7.829199	2.120253	0.807463	7.949695	
т:	6	2.102394	0.800657	7.829199	2.120253	0.807463	7.949695	
11	7	2.091610	0.816787	7.932239	2.099675	0.807544	8.039024	
	8	2.091610	0.816787	7.932239	2.099675	0.807544	8.039024	
	9	2.091610	0.816787	7.932239	2.104626	0.811921	7.950886	
	10	2.091610	0.816787	7.932239	2.104626	0.811921	7.950886	
	11	2.080788	0.842283	7.761505	2.085374	0.85661	7.765677	
	12	2.080788	0.842283	7.761505	2.085374	0.85661	7.765677	
	TiO ₂ : +4	~2.054	NaTi ₂	$_{2}O_{4}:+3.5$ ~	2.179 Na'	$TiO_2: +3 \sim$	2.340	

Table S5. Experimental and calculated diffusion coefficients for NTO and NTO-F

	Direction	Path	Sample	Energy barrier/eV	Diffusion coefficient /cm ² s ⁻¹	Sample	Energy barrier/eV	Diffusion coefficient /cm ² s ⁻¹
Exp.	-	-	NTO	-	1.09 6 10 ⁻¹	NTO-F	-	4.27 ¢ 10 ⁻¹⁰
Cal.	b	Path 1		0.24	1.56 ¢ 10 ⁻⁷	NTO-F	0.32	7.22 & 10 ⁻⁹
		Path 2	NTO	-	-		0.33	4.91 ¢ 10 ⁻⁹
		Path 3		0.20	7.30 ¢ 10 ⁻⁷		0.25	1.07 ¢ 10 ⁻⁷
		Path 4		-	-		0.28	3.37 ¢ 10 ⁻⁸
	a	Path 1	NTO	2.4	1.30 3 10-35	NTO-F	2.8	2.72 6 10 ⁻⁴²
	с	Path 1	NTO	0.49	1.04 🕫 10 ⁻¹¹	NTO-F	0.41	2.27 × 10 ⁻¹⁰
		Path 2		0.31	1.07 ¢ 10 ⁻⁸		0.41	2.27 × 10 ⁻¹⁰
		Path 3		0.26	7.26 ¢ 10 ⁻⁸		0.24	1.57 ¢ 10 ⁻⁷
		Path 4		0.17	2.31 ¢ 10 ⁻⁶		0.22	3.39 & 10 ⁻⁷

Fig. S6. Different sites of O in NTO-F (a). Energy of different configurations (b) and crystal structure of the most stable configuration for the NTO-F (c).

Fig. S7. Tauc plot of the NTO HS and F-NTO HS.

Fig. S8. The b-axis direction of NTO-F (a). Energy barriers of Na⁺ for different diffusion paths (b).

Fig. S9. The a-axis direction of NTO-F (a). Energy barriers of Na⁺ for diffusion paths (b).

References

- 1 C.J. Wen, R.A. Huggins, Mater. Res. Bull., 1980, 15, 1225.
- 2 W. Weppner, J. Electrochem. Soc., 1977, 124, 1569.
- 3 S. Anwer, Y. Huang, J. Liu, J. Liu, M. Xu, Z. Wang, R. Chen, J. Zhang and F. Wu, ACS Appl. Mater. Interfaces, 2017, 9, 11669-11677.
- 4 H. Chen, Y. Wu, J. Duan, R. Zhan, W. Wang, M.Q. Wang, Y. Chen, M. Xu and S.J. Bao, ACS Appl. Mater. Interfaces, 2019, 11, 42197-42205.
- 5 S. Chen, Y. Pang, J. Liang and S. Ding, J. Mater. Chem. A, 2018, 6, 13164-13170.
- 6 C. Ding, T. Nohira and R. Hagiwara, J. Power Sources, 2017, 354, 10-15.
- 7 S. Dong, Z. Li, I.A. Rodríguez-Pérez, H. Jiang, J. Lu, X. Zhang and X. Ji, Nano Energy, 2017, 40, 233-239.
- 8 S. Dong, L. Shen, H. Li, G. Pang, H. Dou and X. Zhang, Adv. Funct. Mater., 2016, **26**, 3703-3710.
- 9 D. Kong, Y. Wang, S. Huang, Y.V. Lim, J. Zhang, L. Sun, B. Liu, T. Chen, P. Valdivia y Alvarado and H.Y. Yang, J. Mater. Chem. A, 2019, 7, 12751-12762.
- 10 T.L. Kulova, Y.O. Kudryashova, A.A. Kuz'mina, A.M. Skundin, I.A. Stenina, A.A. Chekannikov, A.B. Yaroslavtsev and J. Libich, J Solid State Electrochem., 2018, 23, 455-463.
- 11 H. Li, L. Peng, Y. Zhu, D. Chen, X. Zhang and G. Yu, Energy Environ. Sci., 2016, 9, 3399-3405.
- 12 M. Li, X. Xiao, X. Fan, X. Huang, Y. Liu and L. Chen, J. Alloys Compd., 2017, 712, 365-372.
- 13 P. Li, W. Wang, S. Gong, F. Lv, H. Huang, M. Luo, Y. Yang, C. Yang, J. Zhou, C. Qian, B. Wang, Q. Wang and S. Guo, ACS Appl. Mater. Interfaces, 2018, 10, 37974-37980.
- 14 Z. Li, Y. Huang, Y. Jiang, Z. Wang, B. Lu, J. Zhou and M. Xie, ChemElectroChem, 2020, 7, 2258-2264.
- 15 A. Mukherjee, S. Mondal, D. Das, S. Banerjee and S.B. Majumder, Mater. Lett., 2021, 301, 130219.
- 16 J. Ni, S. Fu, C. Wu, Y. Zhao, J. Maier, Y. Yu and L. Li, Adv. Energy Mater., 2016,

6, 1502568.

17 T. Song, H. Chen, Q. Xu, H. Liu, Y.G. Wang and Y. Xia, ACS Appl. Mater. Interfaces, 2018, 10, 37163-37171.

18 D. Sriramulu and H.Y. Yang, Nanoscale, 2019, 11, 5896-5908.

19 N. Wang, X. Xu, T. Liao, Y. Du, Z. Bai and S. Dou, Adv. Mater., 2018, 30, 1804157.

20 S. Wang, Y. Zhu, M. Jiang, J. Cui, Y. Zhang and W. He, *Int. J. Hydrog. Energy*, 2020, **45**, 19611-19619.

21 Y. Wu, J. Wu, S. Zhang, L. Zhu, Z. Yan and X. Cao, *J Solid State Chem*, 2021, **300**, 122247.

22 X. Wang, Y. Li, Y. Gao, Z. Wang and L. Chen, Nano Energy, 2015, 13, 687-692.

23 F. Xie, L. Zhang, D. Su, M. Jaroniec and S.Z. Qiao, Adv. Mater., 2017, 29, 1700989.

24 Q. Zhang, T. Zhang, Y. Wei, T. Zhai and H. Li, *J. Mater. Chem. A*, 2017, **5**, 18691-18697.