Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Facile preparation of large-scale expanded

graphite/polydimethylsiloxane composites for Highly-efficient

electromagnetic interference shielding

Fei Zhang,^{a,b,c} Chuanbing Li,^a Yinhang Zhang,^a Yuxuan Sun,^a Xuming Yao,^d Lei Guo,^a Jinyi Wu,^a Kun Dai,^a Jiatai Wu,^a Qinbing Zheng^{*a}

^a School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P.R. China. E-mail: <u>zhengqingbin@cuhk.edu.cn</u> (Q. B. Zheng)

^b Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China

^c School of Aerospace Engineering, Tsinghua University, Beijing, 100084 China

^d Shaanxi Engineering Research Center for Digital Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, PR China

Table S1. The density of the HOGF (initial density 67.6 mg cm⁻³) after different

Compressive strain	The thickness under compressive load	The thickness after load removal	The density after load removal
0%	20.6 mm	1	67.6 mg cm ⁻³
10%	18.5 mm	19.3 mm	72.2 mg cm ⁻³

compressive strains.

20%	16.5 mm	18.1 mm	76.9 mg cm ⁻³
30%	14.4 mm	16.3 mm	85.4 mg cm ⁻³
40%	12.4 mm	14.1 mm	98.8 mg cm ⁻³
50%	10.3 mm	11.5 mm	121.1 mg cm ⁻³
60%	8.2 mm	9.8 mm	142.1 mg cm ⁻³
70%	6.2 mm	7.9 mm	176.3 mg cm ⁻³
80%	4.1 mm	5.6 mm	248.7 mg cm ⁻³
90%	2.1 mm	3.4 mm	409.6 mg cm ⁻³

 Table S2. The parameters of the HOGF/PDMS composites with different HOGF

 contents.

Samples	Density of HOGF	Density of composite	Mass fraction
	(mg cm ⁻³)	(mg cm ⁻³)	(wt%)
HOGF/PDMS-1	65.3	997.1	6.55
HOGF/PDMS-2	95.3	991.3	9.61
HOGF/PDMS-3	148.1	982.8	15.07
HOGF/PDMS-4	207.6	967.4	21.46

Fig. S1. The cross-sectional and top view scanning electron microscopy (SEM) images of HOGF.

Fig. S2. Comparison the XRD profiles of HOGF in cross-plane and in-plane.

Fig. S3. Curve fitting of the C1 s spectra of the HOGF, PDMS and HOGF/PDMS composites.

Fig. S4. Comparison of the Raman spectra of the PDMS, HOGF and HOGF/PDMS composites.

Fig. S5. Comparison of the XRD spectra of the PDMS, HOGF and HOGF/PDMS composites.

Fig. S6. The flexibility of the HOGF/PDMS composites under bending.

Fig. S7 The tensile stress-strain curves of the HAGF/PDMS composites.

Fig. S8 Schematic diagram of EMI shielding mechanism analysis of HOGF/PDMS with different combined structures: (a) P-V; (b) P-V-P; (c) V-P-V.

Fig. S9 Average reflection (R) and absorption (A) of the HOGF/PDMS composites

with different HOGF density networks (same thickness 5 mm).

Fig. S10 Average SE_T , SE_R and SE_A of the HOGF/PDMS composites with different

HOGF density networks (same thickness 5 mm).