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Supplementary Notes

Computational details

Spin-polarized density functional theory (DFT) calculations were carried out using the projector
augmented-wave (PAW) method' and the Perdew-Burke-Ernzerhoff (PBE) functional,® as
implemented in the Vienna Ab initio Simulation Package (VASP 5.4).3 The Grimme’s DFT-D3
method* was added to describe the van der Waals interactions. For the bulk models, a (6x6x6)
Monkhorst—Pack k-point mesh?® and a plane-wave cutoff energy of 600 eV were used. The DFT-
optimized lattice constants of bulk Cu and Pd are found to be 3.63 A and 3.96 A, respectively,
which are in good agreement with the experimental values. (3.61 A for Cu® and 3.89 A for Pd7)
The most stable configuration of bulk Cu, ¢sPdy 35 with the lowest free energy was used among the
fifteen randomly generated bulk Cug¢sPdy 35 alloy models (Figure S15) and the optimized lattice
constant of the bulk Cug¢sPdg3s is 3.77 A, which is similar to the lattice constant of 3.71 A
estimated by the Vegard’s law®. Based on the optimized bulk structures, the Cu (111), Cug ¢sPdg 35
(111) and Pd (111) surfaces were modeled with four layers of a 4 x 4 supercell and a vacuum slab
of 15 A along the z direction. The Cu slab model and Pd slab model consist of 64 Cu atoms and
64 Pd atoms, respectively while the Cug¢sPdg 35 slab consists of 42 Cu atoms and 22 Pd atoms as
shown in Figure S16. For the slab models, dipole correction was applied along the z direction and
a (3x3x1) Monkhorst—Pack k-point mesh and a plane-wave cutoff energy of 400 eV were used. In
addition, all slab models were optimized by fixing the bottom two layers and allowing the top two
layers and adsorbates to relax. To calculate the free energy of each reaction step at room
temperature (298.15 K), the zero-point energies, enthalpy, and entropy were calculated and the

solvation effect was considered using the implicit solvation model implemented in VASPsol.% 10



All possible adsorption sites on the surface models were investigated and only the most stable

adsorption configuration for each intermediate was considered for discussion in this work.

Specific capacitance calculation

Cyclic voltammetry (CV) was performed with Ar-purged 0.05 M Na,SO, solution to obtain CV
profiles of CuO,, CugosPdoosOr, CugsoPdo 110y, CugesPdo350x, CugssPdoeOr, and Pd,
respectively. CV was conducted with 10, 20, 30, 40, and 50 mV s™! scan rate, respectively. Specific

capacitance was obtained from the slope of scan rate and current density.

Long-term eNO;RR stability for Cu s5Pd) 350,

3 cycle eNO;RR was performed with chronoamperometric method in Ar-purged 0.1 M KNO; and
—1.6 V (vs. Ag/AgCl) potential was applied during 104 h eNO3;RR. At first cycle, catholyte was
sampled at 1.5, 15, 22.2 and 40 h, respectively. After the first cycle catholyte was changed to fresh
Ar-purged 0.1 M KNO; and during second cycle catholyte was sampled 51, 61, 71, 81, 91, and
101 h, respectively. Similarly, after the second cycle catholyte was changed to fresh Ar-purged 0.1
M KNOj; and during third cycle catholyte was sampled at 102 and 104 h, respectively. NH;
conversion was derived from the following calculation where ACyy; and Cyos is the increase of

accumulated NH; concentration and the initial nitrate concentration, respectively.

NH; conversion (%) = ACxu3/Cnoz X 100 (%)
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Fig. S1 eNO;RR products quantification using UV-Vis spectroscopy colorimetric method. Digital
images of catholyte after the reaction, absorption profiles as a function of wavelength and

calibration curve of (a) indophenol method for NH; and (b) NO,™ titration using Griess’ reagent.
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Fig. S2 eNO;RR products quantification using NMR analysis. (a) NMR profiles for various NH;

concentration. (b) Calibration curve. (¢c) FE comparison obtained from NMR and UV-Vis.
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Fig. S3 Operando cell configuration. Digital and schematic images of an electrolysis cell for

operando (a) XAFS and (b) NEXAFS.



Fig. S4 Brlght field TEM and EDS images of (a) CUO‘ggpdo,nOx, (b) CLI().33Pd().670x.
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Fig. SS Characterizations of the prepared catalysts. Profiles of (a) Cu 2p XPS and Pd 3p XPS. (b)
Peak area ratios (Cu?*/Cu® or Cu®) and (Pd?>*/Pd®) as a function of Cu molar ratio. (c) Proportion
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Fig. S6 TEM analysis. Bright field TEM and fast Fourier transformation image of (a) CuO,, (b)
Cuy.94Pd 060y, (¢) CuggoPdg.110;, (d) CugesPd350;, (€) CugazPdos7O;, and (f) Pd. Inverse fast
Fourier transformation image of (g) CuO,, (h) Cug94Pd 060, (1) Cugg9Pdy.110, (j) Cuge5Pdg350;,

(k) Cug33Pdy 6705, and (1) Pd.
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Fig. S7 eNO;3;RR performance of CuggoPdy 1,0, and Cug33Pdg670,. (a) LSV with scan rate 5 mV

s7, (b) NH; yield rate and (c) NH; FE.
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Fig. S8 Long-term eNO;RR stability of Cug5Pdg 350, for 104 h. (a) Current density and NH; FEs.

(b) NH; yield rate and NHj conversion rate as a function or electrolysis time.
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Fig. S9 (a) Traced electrolyte conductivity of 0.1 M KNOj during 6 h of eNO3;RR on Cug ¢5Pd( 350,
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| Ay .
e

by using potentiostatic electrochemical impedance spectroscopy (PEIS) and impedance

measurement technique (ZIR). (b) TEM images of post-reaction of Cug ¢sPd 350..
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Fig. S10 Electrochemical active surface area (ECSA) obtained by cyclic voltammetry (CV)

conducted with various scan rates (10, 20, 30, 40 and 50 mV s!) in 0.05 M Na,SO, solution to

obtain. CV profiles of (a) CuO,, (b) CupsPdj 060y, (c) CugsoPdg 110y, (d) CugesPdg 350y, (€)

Cug33Pdy670,, (f) Pd, respectively. (g) Current density as a function of scan rate. (h) Derived

specific capacitance of CuPdO, nanoparticles.
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Fig. S11 Operando Cu K-edge XAFS profiles of (a) Cug94Pdj 06Oy, (b), CugsoPdp 110y, and (c)
Cug33Pdy 670, Operando oxygen K-edge NEXAFS profiles of (d) CuO, and (e) Cug¢sPd 350,

under applied potentials.
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Fig. S12 Full reaction free energy diagram for the NO;™ reduction reaction including all possible
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Fig. S13 The most stable hydrogen adsorption site on (a) Cu (111), (b) CugsPdg3s (111) and (c)
Pd (111) surfaces. Orange, purple and white spheres correspond to Cu, Pd and H atoms,

respectively. The adsorbed H atom is highlighted with the dashed circle line.
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Fig. S14 LSVs of various CuPdO, nanoparticles with 5 mV s in 0.05 M Na,SOy, solution.
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Fig. S15 The fifteen randomly generated bulk Cuy¢sPdy 35 alloy models. The model highlighted
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Supplementary Table

Table S1. Atomic ratio of Cu-Pd nanoparticles.

EDS ICP-OES

Cu (at%) Pd (at%) Cu (at%) Pd (at%)
CugosPdpos  94.1 5.9 96.1 3.9
CupgoPdp;;  88.6 11.4 87.5 12.5
CugesPdgss  65.8 34.2 63.5 36.5
Cups3Pdps7  33.1 66.9 293 70.7
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