Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Ternary AlGe_xP alloy compounds for high capacity and rate

capability of lithium ion battery anodes

Wenwu Li^{a, *}, Jiajun Wen^b, Anjie Chen^c, Jeng-Han Wang^c, Meilin Liu^d, and Ho Seok Park^{a,e,f,g,*}

^a School of Chemical Engineering, Sungkyunkwan University, 2066 Seoburo, Jangan-gu,

Suwon 440-746, Korea

^b School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006,

PR China

^c Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan

d School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA

30332, USA

^e Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 440-746, Korea

^f SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 440-746, Korea

^gSKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066 Seoburo, Jangan-gu, Suwon 440-746, Korea

* Corresponding Authors: wenwuli@skku.edu (W. Li); phs0727@skku.edu (H. Park)

Fig. S1 Crystal structure of the as-synthesized AlGe₂P compound.

Fig. S2 (a) Low-magnitude TEM image; (b-d) HRTEM images of the as-ynthesized AlGe₂P compound.

Fig. S3 High-resolution XPS spectra of C1s and full spectrum: (a) As-synthesized AlGe₂P powder; (b) The Al+2Ge+P mixture.

Fig. S4 GITT characterizations of the as-synthesized $Al_3Ge_2P_3$, $AlGe_2P$, $AlGe_6P$, and Ge samples: (a₁-d₁) First-cycle discharge and charge profiles; (a₂-d₂) Typical schemes of single-step GITT experiments; (a₃-d₃) dE/dt^(1/2) curves. GITT measurement was carried out by imposing a 10 min pulse current rate at 0.1 A g⁻¹, and followed by 60 min relaxation interval for each pulse.

Fig. S5 (a_1-a_2) : the structural model and electronic structure of the as-prepared Al₃Ge₂P₃ sample; (b_1-b_2) the structural model and electronic structure of the as-prepared AlGe₆P sample.

Fig. S6 Cross section images of $AlGe_2P$ with Ge electrodes at the pristine stae, discharging state of 0.005 V and charging state of 3.0 V. a, b) $AlGe_2P$ electrodes; c, d) Ge electrodes.

Fig. S7 Volume expansion rates of the AlGe₂P and Ge electrodes calculated based on Figure S6.

Fig. S8 Electrochemical characterizations of the AlGe₂P compound and the mixture of Al+2Ge+P: (a) First-cycle discharge and charge profiles; (b) Electrochemical impedance spectra; (c) Cycling stability; (d) Rate performance.

Fig. S9 XPS spectra of high-resolution C1s and full spectrum: (a) The as-prepared AlGe₂P compound; (b) The as-prepared AlGe₂P compound after cycling.

Fig. S10 Electrochemical characterizations of the as-synthesized $AlGe_6P$ sample: (a) Initial three discharge and charge profiles at 100 mA g⁻¹; (b) Cyclic voltammetry (CV) curves at 0.1 mV s⁻¹; (c) First CV curves along with the first discharge and charge profiles; (d) Second CV curves along with the second discharge and charge profiles.

Fig. S11 Electrochemical characterizations of the as-synthesized $Al_3Ge_2P_3$ sample: (a) Initial three discharge and charge profiles at 100 mA g⁻¹; (b) Cyclic voltammetry (CV) curves at 0.1 mV s⁻¹; (c) First CV curves along with the first discharge and charge profiles; (d) Second CV curves along with the second discharge and charge profiles.

Fig. S12 Electrochemical characterizations of the single-component phase of Ge sample: (a) Initial three discharge and charge profiles at 100 mA g^{-1} ; (b) Initial three cyclic voltammetry (CV) curves at 0.1 mV s^{-1} ; (c) First CV curves along with the first discharge and charge profiles; (d) Second CV curves along with the second discharge and charge profiles.

Fig. S13 (a) XRD pattern; (b) Raman spectrum of the as-synthesized AlGe₂P/C.

Fig. S14 a) Discharge and charge profiles, and b) Cycling stability of the $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2//AlGe_2P/C$ full cell.

Compound	AlGe ₂ P
Crystal System	Cubic
Space Group	Fd-3m
A, Å	5.767342
V, Å ³	191.1
2θ-interval, °	10–90
Z	1

Table S1. Main parameters of processing and refinement of the as-prepared AlGe₂P compound.

Table S2. Fractional atomic coordinates and isotropic displacement parameters of the as-synthesized AlGe₂P compound.

	х	Y	Z	Occ
Al	0	0	0	1/4
Ge	0	0	0	1/2
Р	0	0	0	1/4

 Table S3. Comparison of cyclic and rate performances.

Materials	Cycle performance	Rate performance	Reference
AlGe ₂ P	2A g ⁻¹ , 800cycles, 867 mA h g ⁻¹	20A g ⁻¹ , 454 mA h g ⁻¹	This work
GeO ₂ /Ge	1A g ⁻¹ , 40cycles, 520.2 mA h g ⁻¹	5A g ⁻¹ , 124.6 mA h g ⁻¹	[39]
Ge/3DPG-2	0.5C, 250cycles, 931 mA h g ⁻¹	5C, 494mA h g ⁻¹	[40]
np-GeSn ₅	0.2A g ⁻¹ , 500cycles, 520.2 mA h g ⁻¹	1.5A g ⁻¹ , 778 mA h g ⁻¹	[41]
GeCH ₃ /rGO-2	1A g ⁻¹ , 500cycles, 288 mA h g ⁻¹	5A g ⁻¹ , 227 mA h g ⁻¹	[42]
mGe-500	0.5C, 100cycles, 785 mA h g ⁻¹	1C, 655mA h g ⁻¹	[43]
Ge/3DOM-Ni	0.2C, 100cycles, 610 mA h g ⁻¹	10C, 270mA h g ⁻¹	[44]
GeH	1C, 100cycles, 341 mA h g ⁻¹	2C, 265mA h g ⁻¹	[45]
Ge/C	0.1C, 50cycles, 1095 mA h g ⁻¹	2C, 972mA h g ⁻¹	[46]
CuGeO ₃ @RGO	2A g ⁻¹ , 300cycles, 550 mA h g ⁻¹	1A g ⁻¹ , 879 mA h g ⁻¹	[47]
PC-Ge NW	0.16A g ⁻¹ , 50cycles, 789 mA h g ⁻¹	1.6A g ⁻¹ , 540 mA h g ⁻¹	[48]