Supporting Information for

Enhanced interaction betweeen Ru nanoparticles and N, C-modified mesoporous TiO₂ for efficient electrocatalytic hydrogen evolution at All pH Values

Wei Xu,^{ab} Huijie Xie,^{ad} Fuyuan Cao,^b Saisai Ran,^{ad} Yuanhao Duan,^{ad} Bin Li^{*ab} and Lei Wang^{*ac}

^aState Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. Correspondence and requests for materials should be addressed to B.L. (e-mail: binli@qust.edu.cn) and L.W. (e-mail: inorchemwl@126.com)

^bCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

^cCollege of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.

^dCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology.

Fig. S1. (a) SEM and (b) TEM images of N-TiO₂/C nanospheres.

Fig. S2. (a) SEM and (b) TEM images of TiO_2 nanospheres.

Fig. S3. (a) SEM and (b) TEM images of Ru@TiO₂ nanospheres.

Fig. S4. HRTEM images of $Ru@TiO_2$ nanospheres.

Fig. S5. The energy dispersive X-ray spectroscopy of Ru@N-TiO₂/C.

Fig. S6. Nitrogen adsorption/desorption isotherms of (a) N-TiO₂/C, (b) Ru@N-TiO₂/C composites. insert: pore size distribution of N-TiO₂/C and Ru@N-TiO₂/C composites.

Fig. S7. High-resolution O 1s XPS spectra of Ru@N-TiO₂/C composites.

Fig. S8. High-resolution N 1s XPS spectra of Ru@N-TiO₂/C composites.

Fig. S9. EPR spectra of Ru@N-TiO₂/C and Ru@TiO₂.

Fig. S10. Capacitive $\Delta j/2$ as a function of the scan rate for Ru@N-TiO₂/C nanospheres in (a) 1.0 M KOH, (b) 1.0 M PBS and (c) 0.5 M H₂SO₄.

Fig. S11. Cyclic voltammetry curves of (a) Ru@N-TiO₂/C, (b) Ru@TiO₂, (c) N-TiO₂/C and (d) TiO₂, respectively. The arrow indicates the scan rate from 20 to 100 mV s⁻¹.

Fig. S12. Equivalent circuit model. R_{ct} and CPE represent the solution resistance, the charge transfer resistance and constant phase element, respectively.

Fig. S13. Nyquist plots of Ru@N-TiO₂/C, N-TiO₂/C, Ru@TiO₂, and TiO₂ in (a) 1.0 M PBS and (b) 0.5M H_2SO_4 .

Fig. S14. (a) SEM and (b) TEM images of Ru@N-TiO₂/C nanospheres after the 1000th cycling in 1M KOH.

Fig. S15. (a) SEM, (c) TEM and (b) SEM, (d) TEM images of Ru@N-TiO₂/C nanospheres after the 1000th cycling in 1M PBS and 0.5M H₂SO₄, respectively.

Fig. S16. High-resolution Ru 3d XPS spectra of Ru@N-TiO₂/C after stability test in (a) 1M KOH, (b) 1M PBS and (c) 0.5M H₂SO₄.

Fig. S17. LSV and Tafel plots of different loading mass Ru on Ru@N-TiO₂/C composites in (a) 1M KOH, (b) 1M PBS and (C) 0.5M H₂SO₄.

Fig. S18. TEM of different loading mass (a) Ru@N-TiO₂/C-20, (b) Ru@N-TiO₂/C-30 and (c) Ru@N-TiO₂/C-50. Inset: the corresponding size distribution of Ru.

and $0.5 \text{ M H}_2\text{SO}_4$.								
Catalyst	Π (at 10mA cm ⁻²)	Electrolyte solution	Reference					
	124	1.0 M KOH						
Ru/Ni ₂ P@NPC	132	1.0 M PBS	1					
	89	$0.5 \mathrm{~M~H_2SO_4}$						
MoP-Ru ₂ P/NPC	47	1.0 M KOH						
	126	1.0 M PBS	2					
	82	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$						
RuP _x @NPC	74	1.0 M KOH						
	110	1.0 M PBS	3					
	51	$0.5 \text{ M H}_2 \text{SO}_4$						
CoP@BCN	215	1.0 M KOH						
	122	1.0 M PBS	4					
	87	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$						
Rh ₅₀ Ru ₅₀ @UiO-66-NH ₂	177	1.0 M KOH						
	114	1.0 M PBS	5					
	77	$0.5 \mathrm{~M~H_2SO_4}$						
CoRu@NG-3	62	1.0 M KOH						
	88	1.0 M PBS	6					
	52	$0.5 \text{ M H}_2 \text{SO}_4$						
	24	1.0 M KOH						
Ru@WNO-C	358	1.0 M PBS	7					
	172	0.5 M H ₂ SO ₄						

Table S1. Summary of the recently reported HER catalysts in 1M KOH, 1.0 M PBS

Ni ₂ P@NC/NF	84	1.0 M KOH	
	155	1.0 M PBS	8
	68	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	
W/BrN	94	1.0 M KOH	
	190	1.0 M PBS	9
	148	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	
Ru@N-TiO ₂ /C	39	1.0 M KOH	
	86	1.0 M PBS	This work
	116	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	

	1M KOH		1M PBS		$0.5M H_2SO_4$	
	$R_s(\Omega)$	$R_{ct}(\Omega)$	$R_s(\Omega)$	$R_{ct}(\Omega)$	$R_s(\Omega)$	$R_{ct}(\Omega)$
Ru@N-TiO ₂ /C	10.45	52.41	19.11	87.15	11.52	40.97
Ru@TiO ₂	5.579	163.9	27.96	160.3	10.23	49.75
N-TiO ₂ /C	8.958	194.8	23.84	186.2	8.284	138.4
TiO ₂	8.034	420.1	23.54	1092	9.278	229.1

Table S2. Elemental values of simulated equivalent circuit for Ru@N-TiO2/C, Ru@TiO2, N-TiO2/Cand TiO2 in alkaline, neutral, and acidic media.

References

- J.-Q. Chi, X.-Y. Zhang, X. Ma, B. Dong, J.-Q. Zhang, B.-Y. Guo, M. Yang, L. Wang, Y.-M. Chai and C. Liu, ACS Sustain. Chem. Eng., 2019, 7, 17714-17722.
- 2. Y. Gao, Z. Chen, Y. Zhao, W. Yu, X. Jiang, M. He, Z. Li, T. Ma, Z. Wu and L. Wang, *Appl. Catal. B Environ.*, 2022, **303**, 120879.
- 3. J.-Q. Chi, W.-K. Gao, J.-H. Lin, B. Dong, K.-L. Yan, J.-F. Qin, B. Liu, Y.-M. Chai and C.-G. Liu, *ChemSusChem*, 2018, 11, 743-752.
- 4. H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang and R. Zou, *Adv. Energy Mater.*, 2017, 7, 1601671.
- 5. Z. Ding, K. Wang, Z. Mai, G. He, Z. Liu and Z. Tang, Int. J. Hydrogen Energy, 2019, 44, 24680-24689.
- 6. H. Wang, M. Zhou, X. Bo and L. Guo, *Electrochim. Acta*, 2021, 382, 138337.
- 7. G. Meng, H. Tian, L. Peng, Z. Ma, Y. Chen, C. Chen, Z. Chang, X. Cui and J. Shi, *Nano Energy*, 2021, 80, 105531.
- X.-W. Lv, Z.-P. Hu, L. Chen, J.-T. Ren, Y.-P. Liu and Z.-Y. Yuan, ACS Sustain. Chem. Eng., 2019, 7, 12770-12778.
- 9. Q. Li, C. Han, X. Ma, D. Wang, Z. Xing and X. Yang, J. Mater. Chem. A, 2017, 5, 17856-17861.