Ultralight Biomass-derived Carbon Fibre Aerogels for

Electromagnetic and Acoustic Noise Mitigation

Yi Hou^{1#}, Jing Quan^{2#}, Ba Quoc Thai¹, Yijing Zhao², Xiaoling Lan², Xiang Yu³, Wei Zhai², Yong Yang^{1*}, and Boo Cheong Khoo²

¹National University of Singapore, 117411, Singapore

² Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore

² Institute of High Performance Computing, A*STAR, 138632, Singapore *Corresponding author. E-mail: <u>tslyayo@nus.edu.sg</u>

[#]These authors contributed to the work equilly and should be regarded as co-first authors

Fig. S1. Heating program for the carbonization process of SA

Fig. S2 Illustration of the weight and volume measurement for SA-670 sample.

-	-		1		
Sample	Silk	SA-650	SA-670	SA-700	SA-1500
Density/(mg/cm ³)	18.5	14.7	15.1	15.4	11.8

Table S1. Comparison of density for silk fibres, SA-650/670/700/1500.

Fig. S3. SEM images and the fibre size distribution of (a) silk fibres, (b) SA-650, (c) SA-670, (d) SA-700 and (e) SA-1500

Fig. S4. Raman spectrum of degummed silk fibres

Fig. S5. Mixed Gaussian–Lorentzian fitting for D and G bands of Raman spectra for (a) SA-670 and (b) SA-1500

Fig. S6. Comparison of XPS survey spectra for degummed silk fibres, SA-670 and SA-1500.

Sample	С	0	Ν
	at%	at%	at%
Silk	73.7	16.9	9.4
SA-670	77.5	15.0	7.4
SA-1500	86.9	10.2	2.9

Table S2. Comparison of element contents obtained from XPS analysis fordegummed silk fibres, SA-670 and SA-1500.

Fig. S7. Schematic diagram of N-doped graphene with graphitic N, pyrrolic N, pyridinic N and oxidized N atoms.

Fig. S8. Stress-strain curves of SA-670 with set strains from 40% to 80% (Partially enlarged view)

Fig. S9. Cross-section morphology changes of SA-670 during a compressing-releasing cycle.

Fig. S10. Average EMI SE_r, SE_a and SE_{tot} of SA samples with different annealing temperatures.

Fig. S11. Frequency dependent: (a) power coefficients and (b) EMI shielding effectiveness ($SE_r/SE_a/SE_{tot}$) of SA-670/1500 in X+Ku band

		EMI shielding properties (average values)						
Туре	Materials	A /dB	R /dB	A/(A+R)	EAB(A>0.9)/ GHz	Testing Frequency GHz	Density mg/cm ³	ref
	VMQ/Fe ₃ O ₄ @MWCNT/ Ag@NWF composite foams	0.427	0.573	0.427	0.8(7.6-8.4)	2-18	380	1
	VMQ/MWCNTs/Fe ₃ O ₄ nanocomposite foam	~0.650	~0.350	0.650	0	8.2-12.4	320	2
CNT	MWCNT/graphene WPU/Textile composite textile film	0.735	0.265	0.735	0	8.2-12.4	~1000	3
	VMQ/Ag@GF/MWC NT/Fe ₃ O ₄ composite foams	0.820	0.180	0.820	0.2(8.2-8.5)	2-18	500-1500	4
	TPU/CNT composite	0.50	0.500	0.500	0	8.2-12.4	1200	5
	rGO@Fe3O4/T- ZnO/Ag/WPU film	0.610	~0.390	0.610	0.7(9.8-10.5)	8.2-12.4	~1500	6
00	EBAg/FeCo@rGO/ WPU composite foam	0.920	0.080	0.920	1.8(8.2-10)	8.2-12.4	~3500	7
rGO	PDMS/rGO/SWCNT nanocomposite	0.780	0.220	0.780	0	8.2-12.4	~1200	8
	rGO/Carbon/polyuret hane aerogel	0.590	0.410	0.590	0	8.2-12.4	100	9
_	CCA@rGO/PDMS composite	0.320	0.680	0.320	0	8.2-12.4	~1200	10
С	Co/C@CNF-900 aerogel	~0.800	~0.200	~0.800	0	8.2-12.4	1.74	11
nanofiber	CNF/AgNW@Fe ₃ O ₄ composite sponges	0.600	0.400	0.600	0	8.2-12.4	170	12
MXene	Polymer/MXene composite foams	0.945	0.0500	0.950	2.77(5.4-8.17)	5.38-8.17	~300	13
	MXene(Ti3C2Tx)/A NFs hybrid aerogels	0.0856	0.914	0.0856	0	8.2-12.4	84.0	14

Table S3 Comparison of EMI shielding performance for some reported materials

	MXene aerogel	0.910	0.090	0.910	4.2(8.2-12.4)	8.2-12.4	62.6	15
	Laminated Al film w	/ 0.990	0.00960	0.990	8.5(1.5-10)	1.5-10	~270	16
	η-gradient film	0.770					270	
	BiFeO ₃ /							
Metal	BaFe ₇ (MnTi) _{2.5} O ₁₉	~0.625	~0.300	~0.676	0	8.2-12.4	~8000	17
wiciai	composite							
	EP/NCCF/ACET	0 590	0.410	0.590	0	8.2-12.4	210	18
	foam	0.370					210	
	TPU/CIP/Ni mesh	0.620					1500	
	composite	0.030	0.570	0.030	0	10-20.5	~1300	
SA	SA- Average	0.979	0.02086	0.979	0 9/9 2 19	0 2 10	15 1	011#2
	670/1500 Peak	0.9998	0.000149	0.99985	9.0(0.2-18)	0.2-10	13.1	ours

Materials	NRC	Density(mg/cm ³)	Thickness(mm)	ref
PAN/PVB-PET nanofiber aerogel	0.41	10.76	20	20
SiO ₂ /rGO nanofiber sponge	0.56	9.33	30	21
Y ₂ Zr ₂ O ₇ flexible fibrous membrane	0.60	44	30	22
Kenaf fibers	0.50	50	60	23
Hemp fibers	0.39	50	30	23
Coconut fibers	0.49	60	50	23
Cane bark	0.45	145	40	23
GO-melamine foam	0.58	24.12	26	24
PU/textile waste foam	0.59	65	40	25
SiO ₂ particle aerogel	0.48	80-85	30	26
Coir fibers	0.48	153	30	27
SA-670	0.60	15.1	30	ours

 Table S4 Comparison of sound absorption performance for some reported materials

Supplementary Methods

1 Calculation of EMI shielding effectiveness

According to the Calculation theory of shielding effectiveness, when the incident EM wave is transformed at the surface of a material, the incident power could be divided into the reflected power, absorbed power and transmitted power, which could be represented by the power coefficient R (reflectivity), A (absorptivity) and T (transmissivity). The electromagnetic interference shielding effectiveness (EMI SE_{tot}, SE_a and SE_r) were calculated by measured S parameters (S₁₁, S₂₂, S₁₂ and S₂₁) with the following equations:²⁸

$$SE_{tot} = 10\log_{10}\left(\frac{P_i}{P_t}\right) = 10\log_{10}\left(\frac{1}{T}\right) = SE_r + SE_a$$
(S1)

$$SE_r = 10 \log_{10} \left(\frac{P_i}{P_{AV}} \right) = 10 \log_{10} \left(\frac{1}{1 - R} \right)$$
 (S2)

$$SE_a = 10 \log_{10} \left(\frac{P_{AV}}{P_t} \right) = 10 \log_{10} \left(\frac{1 - R}{T} \right)$$
 (S3)

$$SE_{tot} = SE_r + SE_a \tag{S4}$$

$$R = |S_{11}|^2 = |S_{22}|^2 \tag{S5}$$

$$T = |S_{12}|^2 = |S_{21}|^2 \tag{S6}$$

where SE_{tot} , SE_a and SE_r mean the total, absorption and reflection efficiency. P_i and P_t mean the power of incident and transmitted EM waves, and available power ($P_{AV}=P_i$ - P_t) refers to the net power entering the material.

2 Sound absorption performance simulation of fibrous materials

The sound absorption coefficient α is given by:

$$\alpha = 1 - |R|^2 \tag{S7}$$

in which the sound pressure reflection coefficient R is given by:

$$R = \frac{Z_s - \rho_0 c}{Z_s + \rho_0 c} \tag{S8}$$

Where Z_s is the surface impedance and $\rho_0 c$ represents the characteristic impedance of air. For a single layer absorber with the depth of d under a rigid back, the Z_s could be given by:

$$Z_s = -jZ_c cot_{cot}(k_c d)$$
(S9)

Where Z_c and k_c are the characteristic impedance and complex wave number of the absorber. Based on the empirical models developed by the work of Delany and Bazley,^{27, 29} Z_s and k_c of highly porous and homogeneous sound absorbers could be given by:

$$Z_{c} = \rho_{0}c \left(1 + 0.0571 \left(\frac{\rho_{0}f}{\sigma}\right)^{-0.754} - j0.087 \left(\frac{\rho_{0}f}{\sigma}\right)^{-0.732}\right)$$
(S10)

$$k_{c} = \omega/c \left(1 + 0.0978 \left(\frac{\rho_{0}f}{\sigma} \right)^{-0.7} - j0.189 \left(\frac{\rho_{0}f}{\sigma} \right)^{-0.595} \right)$$
(S11)

where ρ_0 is the air density (~ 1.21 kg/cm³), $\omega = 2\pi f$ is the angular frequency. For the fibrous absorbers with the fibre diameter ranging from 6 to 10 µm, the flow resistivity σ could be given by the following relationship³⁰:

$$\sigma = \frac{10.56\eta (1-\varepsilon)^{1.531}}{a^2 \varepsilon^3} \tag{S12}$$

where η is the viscosity of air (1.84×10⁻⁵ Pa s), a is the diameter of fibres and ε is the porosity of the absorber.

References

- 1. J. Yang, X. Liao, G. Wang, J. Chen, W. Tang, T. Wang and G. Li, *J. Mater. Chem. C.*, 2020, **8**, 147-157.
- J. Yang, X. Liao, J. Li, G. He, Y. Zhang, W. Tang, G. Wang and G. Li, *Compos. Sci. Technol.*, 2019, 181, 107670.
- 3. M. Dai, Y. Zhai and Y. Zhang, Chem. Eng. J., 2021, 421, 127749.
- J. Yang, X. Liao, G. Wang, J. Chen, P. Song, W. Tang, F. Guo, F. Liu and G. Li, Compos. Sci. Technol., 2021, 206, 108663.
- 5. D. Feng, D. Xu, Q. Wang and P. Liu, J. Mater. Chem. C, 2019, 7, 7938-7946.
- Y. Xu, Y. Yang, D.-X. Yan, H. Duan, G. Zhao and Y. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 19143-19152.
- H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai, Y. Yang, G. Zhao, Y. Liu and Z.-M. Li, *J. Mater. Chem. A*, 2020, 8, 9146-9159.
- S. Zhao, Y. Yan, A. Gao, S. Zhao, J. Cui and G. Zhang, ACS Appl. Mater. Interfaces, 2018, 10, 26723-26732.
- X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan and M.-S. Cao, *Chem. Eng. J.*, 2019, 369, 1068-1077.
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo and J. Gu, *Nano*micro lett., 2021, 13, 1-17.
- 11. Y. Fei, M. Liang, L. Yan, Y. Chen and H. Zou, *Chem. Eng. J.*, 2020, **392**, 124815.
- 12. Y. Chen, H. Luo, H. Guo, K. Liu, C. Mei, Y. Li, G. Duan, S. He, J. Han and J. Zheng, *Carbohydr. Polym.*, 2021, 118799.
- 13. X. Jia, B. Shen, L. Zhang and W. Zheng, *Carbon*, 2021, **173**, 932-940.
- Z. Lu, F. Jia, L. Zhuo, D. Ning, K. Gao and F. Xie, *Compos. Part B: Eng.*, 2021, 217, 108853.
- R. Bian, G. He, W. Zhi, S. Xiang, T. Wang and D. Cai, *J. Mater. Chem. C*, 2019, 7, 474-478.
- T. Kim, H. W. Do, K.-J. Choi, S. Kim, M. Lee, T. Kim, B.-K. Yu, J. Cheon, B.w. Min and W. Shim, *Nano Letters*, 2021, 21, 1132-1140.
- 17. Y. Li, H. Yang, X. Hao, N. Sun, J. Du and M. Cao, *J. Alloy. Compd.*, 2019, 772, 99-104.
- 18. H. Duan, H. Zhu, J. Yang, J. Gao, Y. Yang, L. Xu, G. Zhao and Y. Liu, *Compos. Part. A: Appl. S.*, 2019, **118**, 41-48.
- 19. S. H. Ryu, Y. K. Han, S. J. Kwon, T. Kim, B. M. Jung, S.-B. Lee and B. Park, *Chem. Eng. J.*, 2022, **428**, 131167.
- 20. L. Cao, Y. Si, Y. Wu, X. Wang, J. Yu and B. Ding, *Nanoscacle*, 2019, **11**, 2289-2298.
- 21. D. Zong, L. Cao, X. Yin, Y. Si, S. Zhang, J. Yu and B. Ding, *Nat. Communications*, 2021, **12**, 6599.

- 22. Y. Xie, L. Wang, Y. Peng, D. Ma, L. Zhu, G. Zhang and X. Wang, *Chem. Eng. J.* 2021, **416**, 128994.
- 23. U. Berardi and G. Iannace, *Appl. Acoust.*, 2017, **115**, 131-138.
- 24. M. J. Nine, M. Ayub, A. C. Zander, D. N. Tran, B. S. Cazzolato and D. Losic, *Adv. Funct. Mater.*, 2017, **27**, 1703820.
- 25. A.-E. Tiuc, H. Vermeşan, T. Gabor and O. Vasile, *Energy Procedia*, 2016, **85**, 559-565.
- 26. C. Buratti, F. Merli and E. Moretti, *Energ. Buildings*, 2017, **152**, 472-482.
- M. Hosseini Fouladi, M. Ayub and M. Jailani Mohd Nor, *Appl. Acoust.*, 2011, 72, 35-42.
- 28. M. Peng and F. Qin, J. Appl. Phys., 2021, 130, 225108.
- 29. M. Delany and E. Bazley, *Appl. Acoust.*, 1970, **3**, 105-116.
- 30. F. P. Mechel., *Formulas of acoustics*, Springer, New York, 2002.