Supporting Information

Suppression of H₂ bubble formation on an electrified Pt electrode interface in an acidic "water-in-salt" electrolyte solution

Cheolmin Park¹, Jinho Chang^{1,2*}

¹Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea

²Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea

Table of Contents						
Figure S1. S-1						
The linearity of i_{pc} and i_{pa} as a function of $v^{1/2}$.						
Figure S2. S-2						
(a) The CV at 50 mV/s on a Pt MDE in a 6 m LiTFSI solution containing 50 mM HClO ₄ (black line) and the best-fit simulation result (red circle), and (b) the surface concentration profiles of chemical species from the simulated CV in a. For the simulation, the e ⁻ -transfer rate constant, k^{0} , and the transfer coefficient, α , were set to be 0.1 cm/s and 0.5, respectively.						
Figure S3. S-3						
The CV in an aqueous 6 m LiTFSI solution without $HClO_4$ on a Pt UME at 20mV/s.						
Figure S4. S-4						
The i_{pa}/i_{pc} vs. v plots in aqueous solutions containing the four different types electrolytes with 25 mM HClO ₄ .						
Figure S5. S-5						
The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiTFSI solutions containing either (a-d) 50 or (e-h) 100 mM HClO ₄ , and the corresponding best-fit simulation results (dotted red circle).						
simulation results (dotted red circle).						

Figure S6. S-6

The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiOTf solutions containing either (a-d) 50 or (e-h) 100 mM HClO₄, and the corresponding best-fit simulation results (dotted blue circle).

Figure S7. S-7

The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiNO₃ solutions containing either (a-d) 50 or (e-h) 100 mM HClO₄, and the corresponding best-fit simulation results (dotted pink circle).

Figure S8. S-8

The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiCl solutions containing either (a-d) 50 or (e-h) 100 mM HClO₄, and the corresponding best-fit simulation results (dotted green circle). For the CV in e, the experimentally obtained CV was too distorted to be fitted by the digital simulation due to the adsorption of H₂ bubbles on an electrode surface.

Figure S9. S-9

(a) The electrode potential profile vs. t for (b) the resulting voltammograms at 20 mV/s, which were measured from acidic solutions with the four different types of 6 m electrolytes.

Figure S10. S-10

The sequential snapshots of H_2 bubble formation on a Pt MDE during cyclic voltammetry for H^+/H_2 redox reaction in 50 mM HClO₄ solutions containing either (a) 6 m LiCl or (b) the same molal concentration of LiTFSI.

Note S1. S-11

Estimation of the thickness of a modulation layer

Figure S11. S-12

The ζ -histograms obtained from Δf vs. t curves in solutions containing various molal concentrations of LiOTf.

Figure S12. S-13

The Δf vs. *t* curves during HER on Pt electrodes in 50 mM HClO₄ solutions containing 6 m LiTFSI (black) and 9 m LiTFSI (red) through the EQCM measurements.

Note S2. S-14

The EQCM measurements for retention of electrogenerated H_2 bubbles on a Pt electrode as a function of applied potentials.

Figure S13. S-15

The Δf vs. *t* curves measured in acidic 3 m LiTFSI solutions on a Pt electrode as the electrode potential was applied to -0.6 V for 40 minutes and stepped to (a) 0, (b) 0.5, (c) 1, and (d) 1.5 V vs. Ag/AgCl, respectively.

Figure S14. S-16 The C_d as a function of the electrode potentials (vs. Ag/AgCl) on Pt MDEs in 6 m (a) LiTFSI

Figure S15. S-17

and (b) LiOTf solutions.

The C_d as a function of the electrode potentials (vs. Ag/AgCl) on an Au MDE in a 6 m LiTFSI solution.

```
Table S1. S-18
```

The reaction parameters for the simulation results in Figure S5-S8. The transfer coefficients of all the charge transfer reactions were assumed to be 0.5.

Table S2. S-19

The measured parameters in acidic solutions containing different types of 6 m electrolytes for the calculation of the thickness of the modulation layers, λ .

```
References S-20
```


Figure S1. The linearity of i_{pc} and i_{pa} as a function of $v^{1/2}$.

Figure S2. (a) The CV at 50 mV/s on a Pt MDE in a 6 m LiTFSI solution containing 50 mM HClO₄ (black line) and the best-fit simulation result (red circle), and (b) the surface concentration profiles of chemical species from the simulated CV in a. For the simulation, the e⁻-transfer rate constant, k° , and the transfer coefficient, α , were set to be 0.1 cm/s and 0.5, respectively.

Figure S3. The CV in an aqueous 6 m LiTFSI solution without $HClO_4$ on a Pt UME at 20mV/s.

Figure S4. The i_{pa}/i_{pc} vs. v plots in aqueous solutions containing the four different types electrolytes with 25 mM HClO₄.

Figure S5. The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiTFSI solutions containing either (a-d) 50 or (e-h) 100 mM HClO₄, and the corresponding best-fit simulation results (dotted red circle).

Figure S6. The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiOTf solutions containing either (a-d) 50 or (e-h) 100 mM HClO₄, and the corresponding best-fit simulation results (dotted blue circle).

Figure S7. The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiNO₃ solutions containing either (a-d) 50 or (e-h) 100 mM HClO₄, and the corresponding best-fit simulation results (dotted pink circle).

Figure S8. The CVs (black line) at various v (20, 50, 100, and 200 mV/s) on a Pt MDE in 6 m LiCl solutions containing either (a-d) 50 or (e-h) 100 mM HClO₄, and the corresponding best-fit simulation results (dotted green circle). For the CV in e, the experimentally obtained CV was too distorted to be fitted by the digital simulation due to the adsorption of H₂ bubbles on an electrode surface.

Figure S9. (a) The electrode potential profile vs. t for (b) the resulting voltammograms at 20 mV/s, which were measured from acidic solutions with the four different types of 6 m electrolytes.

Figure S10. The sequential snapshots of H_2 bubble formation on a Pt MDE during cyclic voltammetry for H^+/H_2 redox reaction in 50 mM HClO₄ solutions containing either (a) 6 m LiCl or (b) the same molal concentration of LiTFSI.

Note S1. Estimation for thickness of a modulation layer

The thickness of the modulation layer (λ) in solutions with different types of 6 m electrolytes were estimated by the following equation.¹

$$\lambda = \frac{1}{2} \left(\sqrt{\frac{\rho\omega}{2\eta}} \right)^{-1} \tag{1}$$

Here, ω is the resonant frequency of the fundamental mode, ρ is the liquid density, and η is the liquid viscosity. Each of the corresponding parameters and the estimated λ in the different electrolytes solutions are listed in Table S2.

Figure S11. The ζ -histograms obtained from Δf vs. *t* curves in acidic solutions containing various molal concentrations of LiOTf.

Figure S12. The Δf vs. *t* curves during HER on Pt electrodes in 50 mM HClO₄ solutions containing 6 m LiTFSI (black) and 9 m LiTFSI (red) through the EQCM measurements.

Note S2. The EQCM measurements for retention of electrogenerated H₂ bubbles on a Pt electrode as a function of applied potentials

We chose an aqueous acidic solution containing 3 m LiTFSI as a model electrolyte condition. For the EQCM measurements, -0.6 V was constantly applied for 40 minutes to drive HER, and the potential was stepped to various positive values for another 20 minutes. After Δf increased and reached at the equilibrium under at constantly applied -0.6 V for 40 min., the potential was stepped to either 0 or 0.5 V, and Δf barely decreased (see Figure S9a-b). As the electrode potential was positively stepped to 1 and 1.5 V (Figure S9c-d), Δf instantaneously reduced, and in the case of 1.5 V, Δf was even reduced to ~0.

Figure S13. The Δf vs. *t* curves measured in acidic 3 m LiTFSI solutions on a Pt electrode as the electrode potential was applied to -0.6 V for 40 minutes and stepped to (a) 0, (b) 0.5, (c) 1, and (d) 1.5 V vs. Ag/AgCl, respectively.

Figure S14. The C_d as a function of the electrode potentials (vs. Ag/AgCl) on Pt MDEs in 6 m (a) LiTFSI and (b) LiOTf solutions.

Figure S15. The C_d as a function of the electrode potentials (vs. Ag/AgCl) on an Au MDE in a 6 m LiTFSI solution.

Table S1. The reaction parameters for the simulation results in Figure S5-S8. The transfer coefficients of all the charge transfer reactions were assumed to be 0.5.

	6 m LiTFSI	6 m LiOTf	6 m LiNO ₃	6 m LiCl
Diffusion coefficient	$D_{H^+} = 9 \times 10^{-6} \mathrm{cm^{2/s}}$	$D_{H^+} = 1.4 \times 10^{-5} \mathrm{cm}^2/\mathrm{s}$	$D_{H^+} = 3 \times 10^{-5} \mathrm{cm^{2/s}}$	$D_{H^+} = 3 \times 10^{-5} \mathrm{cm}^{2/s}$
Charge transfer reaction $H^+ + e^- \rightleftharpoons H$	$E^0 = -0.4 \text{ V}$	$E^0 = -0.4 \text{ V}$	$E^0 = -0.4 \text{ V}$	$E^0 = -0.4 \text{ V}$
	$k_{\text{et}} = 0.03 \text{ cm/s}$	$k_{\text{et}} = 0.03 \text{ cm/s}$	$k_{\text{et}} = 0.03 \text{ cm/s}$	$k_{\text{et}} = 0.03 \text{ cm/s}$
Chemical reaction	$K_{\rm eq} = 2 \times 10^4 { m M}^{-1}$	$K_{\rm eq} = 2 \times 10^4 {\rm M}^{-1}$	$K_{\rm eq} = 2 \times 10^4 {\rm M}^{-1}$	$K_{\rm eq} = 2 \times 10^4 { m M}^{-1}$
$H + H \rightleftharpoons H_2$	$k_{\rm f} = 2 \times 10^7 { m M}^{-1}{ m s}^{-1}$	$k_{\rm f} = 2 \times 10^7 {\rm M}^{-1} {\rm s}^{-1}$	$k_{\rm f} = 2 \times 10^7 {\rm M}^{-1}{\rm s}^{-1}$	$k_{\rm f} = 2 \times 10^7 { m M}^{-1}{ m s}^{-1}$
$H_2 + H_2 \rightleftharpoons (H_2)_2$	$K_{\rm eq} = 3.5 \times 10^8 {\rm M}^{-1}$	$K_{\rm eq} = 3.5 \times 10^8 {\rm M}^{-1}$	$K_{\rm eq} = 3.5 \times 10^8 {\rm M}^{-1}$	$K_{\rm eq} = 3.5 \times 10^8 {\rm M}^{-1}$
	$k_{\rm f} = 0.01 {\rm M}^{-1}{\rm s}^{-1}$	$k_{\rm f} = 0.6 {\rm M}^{-1}{\rm s}^{-1}$	$k_{\rm f} = 4 {\rm M}^{-1}{\rm s}^{-1}$	$k_{\rm f} = 56 {\rm M}^{-1}{\rm s}^{-1}$

	No Li electrolytes	6 m LiTFSI	6 m LiOTf	6 m LiNO ₃	6 m LiCl
η (cp)	0.91	4.51	3.4	2.2	1.9
ho (g/cm ³)	1.03	1.44	1.33	1.2	1.12
λ (nm)	220	420	380	320	308

Table S2. The measured parameters in acidic solutions containing different types of 6 m electrolytes for the calculation of the thickness of the modulation layers, λ .

References

1. S. Na Songkhla and T. Nakamoto, Chemosensors, 2021, 9, 350.