Supporting Information

Phase-engineering of nickel hydroxide in Ni/Ni(OH)₂ interface for efficient hydrogen evolution and hydrazine-assisted water splitting in seawater

Duo Shao,^{§,a} Qi Wang,^{§,a} Xianzhi Yao,^c Yitong Zhou,^{*,a} and Xin-Yao Yu^{*,a,b}

aInstitutes of Physical Science and Information Technology, Anhui University, Hefei

230601, P. R. China

^bSchool of Materials Science and Engineering, Anhui University, Hefei 230601, P. R.

China

^cNingbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, P. R. China

*Email: <u>yuxinyao@ahu.edu.cn</u> (X.Y.Y.) and zhouyt@ahu.edu.cn (Y.Z.)

[§]D.S. and Q.W. contributed equally to this work.

Experimental section

Chemicals: Ni foam with a thickness of 1.5 mm was obtained from GJY Electron. Mater. Co., Ltd. Nickle nitrate hexahydrate (Ni(NO₃)₂·6H₂O) were obtained from Aladdin reagent Co., Ltd. Urea (CH₄NO₂), ammonium fluoride (NH₄F), sodium hydroxide (NaOH), potassium hydroxide (KOH), and hydrochloric acid (HCl) were supplied by Sinopharm Chemical reagent Co., Ltd. Pt/C (platinum, 20% on carbon) was obtained from Alfa Aesar. Hydrazine hydrate 80% was purchased from Tianjin Fengchuan Chemical Reagent Technology Co. LTD. All of the chemicals were used as received without further purifications. Deionized water with the resistance of 18.25 M Ω ·cm at room temperature was used to prepare the aqueous solution. The seawater used in this work is real seawater from Qingdao, China. It is mainly composed of NaCl, MgCl₂, MgSO₄, and K₂SO₄. The alkaline seawater electrolyte was prepared by mixing KOH solution with natural seawater and the pH of the mixed electrolyte was adjusted to 14. There was no other pre-treatment of the natural seawater and the electrochemical testing in 1 M KOH seawater electrolyte was performed after most of the visible particles settled down.

Synthesis of α -Ni(OH)₂ NSAs: Firstly, Ni foam with a size of 2*3 cm² was sonicated in ethanol and 2 M HCl for 5 min and 15 min, respectively, to remove the nickel oxides on the surface, rinsed with deionized water repeatedly, and then dried in oven at 60 °C overnight. In a typical synthesis, 0.4655 g of Ni(NO₃)₂·6H₂O and 0.4855 g of urea were dissolved into 40 mL of deionized water followed by stirring for 30 min to achieve the uniform dispersion. The as-prepared solution was then sealed into 50 mL Teflon-lined stainless steel autoclave. Subsequently, a piece of pretreated Ni foam was immersed into the autoclave and heated at 120 °C for 2 h. After reaction, the resultant Ni foam was taken out and washed with deionized water for several times.

Synthesis of β -Ni(OH)₂ NSAs: The synthesis of β -Ni(OH)₂ nanosheets is based on a simple two-step hydrothermal method. The first hydrothermal procedure was similar to that of α -Ni(OH)₂ nanosheets, except adding 0.1185 g of NH₄F into the system. And then, the as-prepared precursor was put into 0.1 M NaOH aqueous solution and transferred into a 50 mL Teflon autoclave for hydrothermal reaction at 180 °C for 2 h. After that, the resultant sample was rinsed with water for a few times and dried at 60 °C.

Synthesis of Ni/ α -Ni(OH)₂ and Ni/ β -Ni(OH)₂ NSAs: The α -Ni(OH)₂ or β -Ni(OH)₂ NSAs loaded on Ni foam was fixed on the Teflon base in a low-temperature radio frequency (RF) plasma device and activated by using pure H₂ plasma with 400 W of power, 40 Pa of gas pressure, and 20 min activation time to obtain Ni/ α -Ni(OH)₂ or Ni/ β -Ni(OH)₂ NSAs.

Synthesis of Pt/C electrode: Commercial Pt/C powder (20 wt%, 5 mg) was dispersed in a mixed solution of ethanol (270 μ L), deionized water (200 μ L), and Nafion solution (30 μ L) and ultrasonized for 30 minutes. Then, the mixture was piped onto NF and dried for use. The typical mass loading of Pt/C was 1.2 mg·cm⁻².

Structural characterizations: The micro-structural and morphological details of the samples were investigated by field-emission scanning electron microscope (Hitachi S4800) and transmission electron microscope (JEM-2100F). The crystal structure was

characterized by power X-ray diffraction (XRD, DX-2700). The valence state of elements were obtained by X-ray photoelectron spectroscopy (XPS, ESCALAB-MKII spectrometer). C 1s peak at 284.6 eV was used to calibrate all XSP spectra. The generated amounts of H₂ is measured by gas chromatography (GC9790). The optical signal of plasma was recorded by optical emission spectra (OES, PG2000 high speed spectrometer, Idea Optics). Electron spin-resonance (ESR) spectra were recorded on JES FA 300 at room temperature and atmospheric pressure.

Electrochemical characterizations: All the electrochemical measurements were conducted on CHI 760E electrochemical workstation with a typical three-electrode system. An as-prepared samples were directly used as the working electrode, along with a graphite rod as the counter electrode and an Hg/HgO electrode as the reference electrode. The electrolyte was 1.0 M KOH for HER and water electrolysis, while the electrolyte for HzOR is 1.0 M KOH with 100 mM, 200 mM, 300 mM and 400 mM hydrazine. The LSV curves were tested from 0 to -0.5 V vs. RHE for HER and 0.3 to -0.1 V vs. RHE for HzOR at a scan rate of 1 mV s⁻¹ with 90% i*R* compensation. The AC EIS measurements were collected with frequency ranging from 10⁵ to 0.005 Hz. The ECSA was estimated by C_{dl} . Cyclic voltammetry (CV) at different scan rates (20, 40, 60, 80, 100 and 120 mV s⁻¹) in the non-Faradaic region (0.05 to 0.15 V vs. RHE) were used to measure C_{dl} . The stability test was measured by chronoamperometry (CA) method at a constant potential. The TOF values are estimated according to the following equation:

$$TOF = \frac{I}{2NF}$$

In which *I* is current (A) and the *F* means Faraday constant (96,485 C mol⁻¹). The *N* is number of active sites which can be calculated with the following equation:

$$\frac{Q}{N=2F} = \frac{It}{2F} = \frac{I \times V/\mu}{2F} = \frac{S}{2F \times \mu}$$

Where *S* is integrated effective area in CV recorded, and μ is the scan rate (50 mV s⁻¹). The H₂ evolution amount on the Ni/ β -Ni(OH)₂ nanosheets electrode at 10 mA cm⁻² is calculated by the following equation:

$$n(\mathrm{H}_2)_e = x_0 \times n$$

In which x_0 is the amount of H₂ evolution (mol ppm⁻¹) measured by gas chromatography and *n* is the amount of gas in each vial (1 cm³). The theoretical amount of H₂ evolution during HER is obtained by the equation:

$$n(\mathrm{H}_2)_t = \frac{It}{2F}$$

Where I is the measured current (A) and t means time (s) of H_2 evolution.

The Faradic efficiency of H₂ evolution is calculated according to the following

equation: FE =
$$\frac{n(H_2)e}{n(H_2)t} \times 100$$
 %.

Theoretical calculations: All the density functional theory (DFT) were carried out by Vienna ab initio simulation package (VASP).¹⁻³ The projector augmented-wave (PAW) method was used to describe the core electrons.^{4,5} The Perdew-Burke-Ernzerh (PBE) in the generalized gradient approximation (GGA) was applied to describe the exchange-correlation function.^{6,7} The plane wave basis with an energy cutoff of 400 eV was applied to expand the valence electrons. The Brillouin zone was sampled with $2 \times 2 \times 1$ Monkhorst-Pack *k*-point mesh, and a Gaussian smearing of 0.05 eV was

applied to speed up electronic convergence. All structures were fully relaxed until the total energy and force convergence criterion was set to 10^{-4} eV and 0.02 eV/Å. The 4×4 supercell of α -Ni(OH)₂ and β -Ni(OH)₂ nanosheets were used to build the calculation models and 7 Ni atoms nanocluster was combine with Ni(OH)₂ nanosheets to build the Ni/Ni(OH)₂ models. The water decomposition pathways were obtained using the climbing image nudged elastic band (CI-NEB). A vacuum height of 20 Å along the vertical direction was selected to avoid the unwanted interaction between the slab and its period images. The final structure was illustrated with VESTA software.

The energy of adsorbate M* (ΔE_{M^*}) was calculated using the following formula $\Delta E_{M^*} = E_{M^*} + E_* - E_M$, where E_{M^*} and E_* are the DFT calculation energy of adsorption system, unabsorbed surface, and an isolate intermediate M, respectively.

Fig. S1. The side view and top view of the model of α -Ni(OH)₂ (a-c) and β -Ni(OH)₂ (b-d) with oxygen vacancies. Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S2. The adsorption of H on α -Ni(OH)₂ (a-c) and β -Ni(OH)₂ (b-d). Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S3. The side view of the model of Ni/ α -Ni(OH)₂ (a) and Ni/ β -Ni(OH)₂ (b). Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S4. The charge density difference of Ni/α -Ni(OH)₂. Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms. Yellow and cyan clouds indicate charge gain and loss, respectively.

Fig. S5. The DOS plots of α -Ni(OH)₂ and Ni/ α -Ni(OH)₂. The inset is the enlarged plot near the Fermi level.

Fig. S6. The adsorption of H on the Ni(0) sites of Ni/ α -Ni(OH)₂ (a-c) and Ni/ β -Ni(OH)₂ (b-d). Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S7. The adsorption of H on metallic Ni. Grey balls: Ni atoms; Pink balls: H atoms.

Fig. S8. Free energy diagrams for hydrogen adsorption on metallic Ni and Ni(0) sites of Ni/ α -Ni(OH)₂ and Ni/ β -Ni(OH)₂.

Fig. S9. DFT calculations of initial state (IS), transition state (TS), and final state (FS) for water dissociation on α -Ni(OH)₂. Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S10. DFT calculations of IS, TS, and FS for water dissociation on β -Ni(OH)₂. Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S11. DFT calculations of IS, TS, and FS for water dissociation on Ni/α -Ni(OH)₂. Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S12. DFT calculations of IS, TS, and FS for water dissociation on Ni/β - $Ni(OH)_2$. Grey balls: Ni atoms; Red balls: O atoms; Pink balls: H atoms.

Fig. S13. (a) XRD pattern and (b) SEM image of α -Ni(OH)₂ NSAs.

Fig. S14. (a) XRD pattern and (b) SEM image of β -Ni(OH)₂ NSAs.

Fig. S15. XRD patterns of (a) Ni/ α -Ni(OH)₂ NSAs and (b) Ni/ β -Ni(OH)₂ NSAs.

Fig. S16. Optical emission spectra of H₂ plasma.

Fig. S17. CV curves of (a) α -Ni(OH)₂, (b) β -Ni(OH)₂, (c) Ni/ α -Ni(OH)₂, and (d) Ni/ β -Ni(OH)₂ NSAs in the double layer capacitive region at different scan rates.

Fig. S18. (a) TOF curves and (b) ECSA normalized LSV curves of Ni/ α -Ni(OH)₂ and Ni/ β -Ni(OH)₂ NSAs.

Fig. S19. (a,c,e) SEM images and (b,d,f) Ni 2p high-resolution XPS spectra of Ni/ β -Ni(OH)₂-10 min (a,b), Ni/ β -Ni(OH)₂-30 min (c,d), and Ni/ β -Ni(OH)₂-40 min (e,f) NSAs.

Fig. S20. (a) LSV curves and (b) Nyquist plots of Ni/ β -Ni(OH)₂-10 min, Ni/ β -Ni(OH)₂, Ni/ β -Ni(OH)₂-30 min, and Ni/ β -Ni(OH)₂-40 min NSAs. As can be seen, the Ni/ β -Ni(OH)₂ NSAs obtained with plasma reduction time of 20 min demonstrate higher activity and smaller charge-transfer resistance than other samples.

Fig. S21. CV curves of (a) Ni/β-Ni(OH)₂-10 min, (b) Ni/β-Ni(OH)₂-30 min, and (c) Ni/β-Ni(OH)₂-40 min NSAs at different scan rates. (d) Current density differences plotted against scan rates of Ni/β-Ni(OH)₂-10 min, Ni/β-Ni(OH)₂, Ni/β-Ni(OH)₂-30 min, and Ni/β-Ni(OH)₂-40 min NSAs. The higher C_{dl} of Ni/β-Ni(OH)₂ NSAs demonstrate that they expose more active sites.

Fig. S22. (a-b) SEM images, (c) XRD pattern, and (d) Ni 2p XPS spectra of Ni/ β -Ni(OH)₂ NSAs after 100 h of HER.

Fig. S23. (a) SEM images and (b) XRD patterns of Ni/α -Ni(OH)₂ NSAs before and after 100 h of HER.

Fig. S24. FE for hydrogen evolution on Ni/ β -Ni(OH)₂ NSAs as a function of time at the current density of 10 mA cm⁻².

Fig. S25. HER stability test of Ni/β -Ni(OH)₂ NSAs in 1.0 M KOH seawater.

Fig. S26. LSV curves of Ni/ β -Ni(OH)₂ NSAs with different concentrations of hydrazine.

Fig. S27. LSV curves of Ni/ β -Ni(OH)₂ NSAs at different scan rates.

Z'/ Ohm **Fig. S28.** The Nyquist plots of Ni/α-Ni(OH)₂ NSAs, Ni/β-Ni(OH)₂ NSAs, and Pt/C in 1.0 M KOH + 0.3 M N₂H₄.

Fig. S29. LSV curves of Ni/ β -Ni(OH)₂ NSAs in 1.0 M KOH and 1.0 M KOH + 0.3 M N₂H₄.

Fig. S30. FE for hydrogen evolution on Ni/ β -Ni(OH)₂ NSAs as a function of time at the current density of 10 mA cm⁻² during OHzS.

Fig. S31. Chronoamperometric curve of Ni/β -Ni(OH)₂ NSAs for OHzS in alkaline seawater with 1.0 M KOH and 0.3 M N₂H₄.

Fig. S32. (a) Schematic illustration and working principle of DHzFC. (b) Optical image of the integrated H_2 production system. (c) Open-circuit voltage of the homemade DHzFC. (d) Discharge polarization curve and power density plot of DHzFC. (e) The H_2 generation rate of the self-powered H_2 production system in 1.0 M KOH with 0.3 M hydrazine.

Table S1. The atomic ratio of Ni²⁺: Ni⁰ in Ni/Ni(OH)₂.

Samples	The ratio of Ni ²⁺ : Ni ⁰	
Ni/α-Ni(OH) ₂ NSAs	1:1.18	
Ni/β-Ni(OH) ₂ NSAs	1:1.27	
Ni/β-Ni(OH) ₂ -10 min NSAs	1:0.92	
Ni/β-Ni(OH) ₂ -30 min NSAs	1:1.79	
Ni/β-Ni(OH) ₂ -40 min NSAs	1:2.16	

Table S2. Comparison of the HER performance of $Ni/\beta-Ni(OH)_2$ NSAs with other reported HER electrocatalysts in 1 M KOH electrolyte.

Electrocatalysts	<i>j</i> (mA cm ⁻²)	Overpotential (mV) at corresponding j	References
Ni/β-Ni(OH) ₂	10	58	
	100	157	I IIS WORK
Ni/Ni(OH) ₂ /NF	10	72	[69]
	100	233	႞ၖၜ႞
Ni(OH) ₂ -Ni ₃ N	20	112	[S9]
	100	190	
NiO/Ni-CNT	10	80	[S10]
Ni(OH) ₂ /MoS ₂	10	150	[S11]
Ni(OH) ₂ -Fe ₂ P/Ti mesh	10	76	[S12]
Ni/NiO	10	145	[\$13]
Fe-Ni(OH) ₂	10	138	[S14]
Ni/NiO@C NPs	10	64	[\$15]
Ni(OH) ₂	10	>355 mV	[S16]

Electrocatalysts	<i>j</i> (mA cm ⁻²)	Overpotential (mV) at corresponding j	References
Ni/β-Ni(OH) ₂	10	62	This work
	100	179	
Ni-N ₃	10	139	[S17]
S-NiMoO4@NiFe-	100	220	[610]
LDH/NF	100	220	[518]
Co-Ni ₂ P	50	115	[S19]
CoNiSe ₂ /N-SSCSs	10	88	[S20]
$Ni_5P_4@Ni^{2+\delta}O_{\delta}(OH)_{2-\delta}$	10	144	[S21]

Table S3. Comparison of the HER performance of Ni/β - $Ni(OH)_2$ NSAs with other reported HER electrocatalysts in 1 M KOH seawater electrolyte.

References

(1) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. *Phys. Rev.* B 1993, 47, 558-561.

(2) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54*, 11169-11186.

(3) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15-50.

(4) Blöchl, P. E. Projector Augmented-Wave Method. *Phys. Rev. B* 1994, *50*, 17953-17979.

(5) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* 1999, *59*, 1758-1775.

(6) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. *Phys. Rev. B* **1992**, *45*, 13244-13249.

(7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.

(8) Zhong, W.; Li, W.; Yang, C.; Wu, J.; Zhao, R.; Idrees, M.; Xiang, H.; Zhang, Q.; Li, X. Interfacial Electron Rearrangement: Ni Activated Ni(OH)₂ for Efficient Hydrogen Evolution. *J. Energy Chem.* **2021**, *61*, 236-242.

(9) Gao, M.; Chen, L.; Zhang, Z.; Sun, X.; Zhang, S. Interface Engineering of the Ni(OH)₂–Ni₃N Nanoarray Heterostructure for the Alkaline Hydrogen Evolution Reaction. *J. Mater. Chem. A* **2018**, *6*, 833-836.

(10) Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J.; Guan, M.; Lin, M.-C.; Zhang, B.; Hu, Y.; Wang, D.-Y.; Yang, J.; Pennycook, S. J.; Hwang, B.-J.; Dai, H. Nanoscale Nickel Oxide/Nickel Heterostructures for Active Hydrogen Evolution Electrocatalysis. *Nat.*

Commun. 2014, 5, 4695.

(11) Zhao, G.; Lin, Y.; Rui, K.; Zhou, Q.; Chen, Y.; Dou, S. X.; Sun, W. Epitaxial Growth of Ni(OH)₂ Nanoclusters on MoS₂ Nanosheets for Enhanced Alkaline Hydrogen Evolution Reaction. *Nanoscale* **2018**, *10*, 19074-19081.

(12) Zhang, X.; Zhu, S.; Xia, L.; Si, C.; Qu, F.; Qu, F. Ni(OH)₂–Fe₂P Hybrid Nanoarray for Alkaline Hydrogen Evolution Reaction with Superior Activity. *Chem. Commun.* **2018**, *54*, 1201-1204.

(13) Yan, X.; Tian, L.; Chen, X. Crystalline/Amorphous Ni/NiO Core/Shell Nanosheets as Highly Active Electrocatalysts for Hydrogen Evolution Reaction. *J. Power Sources* **2015**, *300*, 336-343.

(14) Ren, J.-T.; Yuan, G.-G.; Weng, C.-C.; Chen, L.; Yuan, Z.-Y. Uniquely Integrated Fe-doped Ni(OH)₂ Nanosheets for Highly Efficient Oxygen and Hydrogen Evolution Reactions. *Nanoscale* **2018**, *10*, 10620-10628.

(15) Yin, J.; Fan, Q.; Li, Y.; Cheng, F.; Zhou, P.; Xi, P.; Sun, S. Ni–C–N Nanosheets as Catalyst for Hydrogen Evolution Reaction. *J. Am. Chem. Soc.* **2016**, *138*, 14546-14549.

(16) Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water Photolysis at 12.3% Efficiency Via Perovskite Photovoltaics and Earth-Abundant Catalysts. *Science* **2014**, *345*, 1593-1596.

(17) Zang, W.; Sun, T.; Yang, T.; Xi, S.; Waqar, M.; Kou, Z.; Lyu, Z.; Feng, Y. P.; Wang, J.; Pennycook, S. J. Efficient Hydrogen Evolution of Oxidized Ni-N₃ Defective Sites for Alkaline Freshwater and Seawater Electrolysis. *Adv. Mater.* **2021**, *33*, 2003846.

(18) Wang, H.; Chen, L.; Tan, L.; Liu, X.; Wen, Y.; Hou, W.; Zhan, T. Electrodeposition of NiFe-Layered Double Hydroxide Layer on Sulfur-Modified Nickel Molybdate Nanorods for Highly Efficient Seawater Splitting. *J. Colloid Interface Sci.* **2022**, *613*, 349-358.

(19) Sun, X.; Yang, P.; Wang, S.; Hu, J.; Chen, P.; Xing, H.; Zhu, W. Synthesis of Bristlegrass-Like Co-doped Ni₂P Composites on Ni Foam for Overall Seawater Splitting. *Int. J. Hydrogen Energy* **2022**, *6*, 194.

(20) Wang, Z.; Tian, Y.; Wen, M.; Wu, Q.; Zhu, Q.; Fu, Y. Integrating CoNiSe₂ Nanorod-Arrays onto N-doped Sea-Sponge-C Spheres for Highly Efficient Electrocatalysis of Hydrogen Evolution Reaction. *Chem. Eng. J.* **2022**, *446*, 137335.

(21) Huang, Y.; Hu, L.; Liu, R.; Hu, Y.; Xiong, T.; Qiu, W.; Balogun, M. S.; Pan, A.; Tong, Y. Nitrogen Treatment Generates Tunable Nanohybridization of Ni_5P_4 Nanosheets with Nickel Hydr(oxy)Oxides for Efficient Hydrogen Production in Alkaline, Seawater and Acidic Media. *Appl. Catal.*, *B* **2019**, *251*, 181-194.