Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

# **Supporting information**

## Subnanometric CoSn clusters Embedded N-doped Carbon Nanobox

## (SN-CoSn@C NBs) Realizes High Efficiency Adsorption-Conversion

### of Polysulfide

Ruili Gao,<sup>‡a</sup> Qian Zhang,<sup>‡a</sup> Hui Wang,<sup>\*a</sup> Xuyun Wang,<sup>a</sup> Jianwei Ren<sup>\*b</sup> and Rongfang Wang<sup>\*a</sup>

<sup>a</sup>State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
email: <u>wangh@qust.edu.cn</u> (H. Wang) <u>rfwang@qust.edu.cn</u> (R.Wang)
<sup>b</sup>Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa
email: jren@uj.ac.za (J. Ren)

<sup>‡</sup>Ruili Gao and Qian Zhang contributed to this work equally.



Fig. S1. SEM image and XRD pattern of the CoSn(OH)<sub>6</sub> sample.



Fig. S2. (a, b) SEM and (c) TEM images of the  $CoSnO_x@C$  NBs sample.



Fig. S3. (a, b) SEM and (c) TEM images of the CoSn@C NBs sample.



Fig. S4. (a)  $N_2$  sorption isotherm and (b) pore-size distribution (PSD) of the  $CoSnO_x@C$  NBs sample. (c)  $N_2$  sorption isotherm and (d) pore-size distribution (PSD) of the CoSn@C NBs sample.



Fig. S5. XRD patterns of (a) after 6 M H<sub>2</sub>SO<sub>4</sub> etching, and (b) after H<sub>2</sub> reduction.



Fig. S6 EDS spectra of the SN-CoSn@C NBs sample.



**Fig. S7.** (a) XPS spectrum, (b) high-resolution C *1s* and (c) N *1s* XPS spectrum of the SN-CoSn@C NBs sample.



**Fig. S8.** High-resolution XPS spectra of the CoSn@C NBs sample: (a) C *1s*, (b) N *1s* (c) Co *2p* and (d) Sn *3d*.



Fig. S9. High-resolution XPS spectra of the CoSnO<sub>x</sub>@C NBs sample: (a) C *1s*, (b) N

*ls* (c) Co *2p* and (d) Sn *3d*.



Fig. S10. (a, b) SEM and (c)TEM images of the CoSn@C NBs/S sample.



Fig. S11. (a, b) SEM and (c) TEM images of the CoSnO<sub>x</sub>@C NBs/S sample.



Fig. S12. The charge-discharge curves of (a)  $CoSnO_x@C$  NBs/S and (b) CoSn@C NBs/S electrodes at different current densities.



**Fig. S13.** (a) TGA analysis of the SN-CoSn@C NBs sample with 70% S-loading. (b) Cycling stability of SN-CoSn@C NBs/S electrode at 0.5 C: sulfur loading of 4.3 mg cm<sup>-2</sup>,  $E/S=10 \ \mu L \ mg^{-1} \ and 5 \ mg \ cm^{-2}$ ,  $E/S=8 \ \mu L \ mg^{-1}$ .



Fig. S14. EIS curves of the  $CoSnO_x@C NBs/S$ , CoSn@C NBs/S and SN-CoSn@C NBs/S samples.



Fig. S15. CV curves of the  $CoSnO_x@C NBs/S$  sample: (a) 0.1 mV s<sup>-1</sup> and (b) 0.1-0.5 mV s<sup>-1</sup>. CV curves of the CoSn@C NBs/S sample: (c) 0.1 mV s<sup>-1</sup> and (d) 0.1-0.5 mV s<sup>-1</sup>.

| $D_{Li}^{+}(cm^2 s^{-1})$   | A(cathodic peak) B(cathodic peak)                |                                                                                                | C(anodic peak)                                   |
|-----------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                             | $S_8 \rightarrow LiPS(Li_2S_n, 4 \leq n \leq 8)$ | LiPS (Li <sub>2</sub> S <sub>n</sub> ,2≤n<4)→Li <sub>2</sub> S <sub>2</sub> /Li <sub>2</sub> S | $Li_2S_2/Li_2S{\rightarrow}LiPS{\rightarrow}S_8$ |
| CoSnO <sub>x</sub> @C NBs/S | 5.03*10-10                                       | 1.62*10-9                                                                                      | 1.43*10-9                                        |
| CoSn@C NBs/S                | 2.04*10-9                                        | 4.31*10-9                                                                                      | 1.33*10-8                                        |
| SN-CoSn@C NBs/S             | 7.02*10-9                                        | 1.88*10-8                                                                                      | 4.33*10 <sup>-8</sup>                            |

**Table S1.** Li<sup>+</sup> diffusion coefficients of the  $CoSnO_x@C NBs/S$ , CoSn@C NBs/S and SN-CoSn@C NBs/S three samples.



**Fig. S16.** (a) The discharging FTIR spectra of the SN-CoSn@C NBs-assembled LSBs at 500-1500 cm<sup>-1</sup>. (b) FTIR spectra from the blank cell in literature <sup>1</sup>. The adsorption peaks are pointed by the red arrows.

| Peak (cm <sup>-1</sup> ) | Assignment                  | Species           | Ref. |
|--------------------------|-----------------------------|-------------------|------|
| 1298                     | $\upsilon_{s}(SO_{3})$      | ion pairs         |      |
| 1248                     | $v_{as}(SO_3)$              | ion pairs         | 1    |
| 1228                     | υ <sub>s</sub> (CF3)        | free triflate ion | 1    |
| 1188                     | $v_{as}$ (SO <sub>2</sub> ) | triflate ion      | 2    |
| 1167                     | $v_{as}(CF_3)$              | ion pairs         | 1    |
| 1158                     | $v_{as}(CF_3)$              | free triflate ion | 1    |

Table S2. FT-IR peak assignments in literature <sup>1</sup>.

| 1137 | υ (C-N)                     | ion pairs                                            | 3 |
|------|-----------------------------|------------------------------------------------------|---|
| 1121 | υ (C-O)                     | DOL, DME, and/or ROLi                                | 1 |
| 1104 | C-O                         | DME                                                  |   |
| 1080 | C-O/CH <sub>2</sub> rocking | DOL                                                  |   |
| 1059 | $v_{s}(SO_{3})$             | ion aggregates                                       |   |
| 1050 |                             | ion aggregates                                       |   |
| 1040 |                             | ion pairs                                            |   |
| 1030 |                             | free ions                                            |   |
| 1015 | C-0                         | DME, DOL                                             |   |
| 936  |                             | DOL ring vibration                                   |   |
| 913  |                             | CH <sub>2</sub> rocking/C-O stretch                  |   |
| 868  | δ (Li-O)                    | R-OLi edge groups                                    |   |
| 789  | v <sub>s</sub> (Co-N)       | ion pairs                                            | 4 |
| 762  | δ (CF <sub>3</sub> )        | R-OLi edge groups                                    | 1 |
|      |                             | ion pairs                                            |   |
|      |                             | free ions                                            |   |
| 739  | υ(Sn-N)                     | ion pairs                                            | 5 |
| 668  | v <sub>as</sub> (Sn-N)      | ion pairs                                            |   |
| 655  | δ(Sn-N)                     | bending mode                                         |   |
| 616  | δ <sub>s</sub> (S=O)        | sulfone, S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> | 1 |
| 572  | δ (SO <sub>3</sub> )        | bending mode                                         |   |
| 517  | δ (CF <sub>3</sub> )        | bending mode                                         |   |
| 504  | (S-S)                       | $S_x^{2-}(2 \le x \le 8)$                            |   |

| Material type                                         | Initial<br>capacity<br>(mAh g <sup>-1</sup> ) | High rate<br>capacity<br>(mAh g <sup>-1</sup> ) | Capacity decay rate<br>per cycle | Ref.         |
|-------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|----------------------------------|--------------|
| Co-NCNT@CF/S                                          | 1259/0.1 C                                    | 627/3 C                                         | 0.038%/3 C/500                   | 6            |
| S@CNTs/Co <sub>3</sub> S <sub>4</sub> @NC             | 1570/0.1 C                                    | 850/5 C                                         | 0.014%/5 C/1000                  | 7            |
| E-Co <sub>x</sub> Sn <sub>y</sub> /NC/S-3             | 1264/0.1 C                                    | 778/2 C                                         | 0.0377%/1 C/500                  | 8            |
| S-FeCoNi@C-CNB/S                                      | 1238 /0.1 C                                   | 676/1 C                                         | 0.049%/1 C/200                   | 9            |
| S/FeCo-C                                              | 1251.9/0.2 C                                  | 791.9/1 C                                       | 0.073%/1 C/500                   | 10           |
| E-CoFeCN@C/S                                          | 1226/0.1 C                                    | 899.5/1 C                                       | 0.048%/1 C/300                   | 11           |
| S/CoFe <sub>2</sub> O <sub>4</sub> @C                 | 1191/0.2 C                                    | 816/2 C                                         | 0.063%/2 C/500                   | 12           |
| NiCo <sub>2</sub> S <sub>4</sub> @MoS <sub>2</sub> -S | 1118/0.1 C                                    | 1200/5 C                                        | 0.12%/5 C/500                    | 13           |
| SN-CoSn@C NBs                                         | 1291/0.1 C                                    | 557.3/5 C                                       | 0.056%/5 C/800                   | This<br>work |

Table S3. Performance comparison with other electrodes reported in literature.

### References

- 1 C. Dillard, A. Singh and V. Kalra, *The Journal of Physical Chemistry C*, 2018, **122**, 18195-18203.
- 2 A. Doron, P. Elad, E. Ran, S. Gregory, K. C. Scordilis, A John, J. Electrochem. Soc., 2009, **156**, 694-702.
- 3 S. Yao, C. Zhang, Y. He, Y. Li, Y. Wang, Y. Liang, X. Shen, T. Li, S. Qin and J. Xiang, *ACS Sustainable Chemistry & Engineering*, 2020, **8**, 7815-7824.
- 4 C. He, Y. Zhang, Y. Zhang, L. Zhao, L. P. Yuan, J. Zhang, J. Ma and J. S. Hu, *Angew Chem Int Ed Engl*, 2020, **59**, 4914-4919.
- 5 A. Andrea, K. Christian, N. Christine, N. Heinrich, S. Martin, S. Wolfgang, Chem. Ber. 1996, **129**, 175-89.
- 6 D. Wang, K. Ma, J. Hao, W. Zhang, C. Wang, C. Xu, H. Shi, Z. Ji, X. Yan and Y. Gu, *Nano Energy*, 2021, **89**, 106426-106436.
- 7 H. Zhang, M. Zou, W. Zhao, Y. Wang, Y. Chen, Y. Wu, L. Dai and A. Cao, ACS Nano, 2019, 13, 3982-3991.
- 8 Z. Qiao, F. Zhou, Q. Zhang, F. Pei, H. Zheng, W. Xu, P. Liu, Y. Ma, Q. Xie, L. Wang, X. Fang and D.-L. Peng, *Energy Storage Mater.*, 2019, **23**, 62-71.

- 9 Y.-J. Wu, C.-H. Chen, S.-H. Lin, C.-L. Huang, Y.-X. Yeh, J.-Y. Tan, J.-T. Su, C.-T. Hsieh and S.-Y. Lu, *J. Mater. Chem. A*, 2021, **9**, 9028-9037.
- 10 H. Li, L. Fei, R. Zhang, S. Yu, Y. Zhang, L. Shu, Y. Li and Y. Wang, *J. Energy Chem.*, 2020, **49**, 339-347.
- 11 X. Cao, M. Zhang, F. Zhu and X. Zhang, J. Alloys Compd., 2022, 895, 162609-162619.
- 12 L.-L. Gu, J. Gao, C. Wang, S.-Y. Qiu, K.-X. Wang, X.-T. Gao, K.-N. Sun, P.-J. Zuo and X.-D. Zhu, *J. Mater. Chem. A*, 2020, **8**, 20604-20611.
- 13 L. Yan, Z. Zhang, F. Yu, J. Wang, T. Mei and X. Wang, *Electrochim. Acta*, 2021, 383, 138268-138274.