Supporting information

Charge and Spin Communication between Dual Metal Single-Atom Sites on C₂N Sheet: Regulating Electronic Spin Moments of Fe Atom for N₂ Activation and Reduction

Yuqin Zhang,^a Xiaohang Wang,^a Tianyong Liu,^a Qian Dang,^a Ling Zhu,^a Yi Luo,^b Jun

Jiang, ^{b*}and Shaobin Tang^{a*}

^aKey Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China

^bSchool of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China

* To whom correspondence should be addressed. Email: jiangj1@ustc.edu.cn

tsb1980@xmu.edu.cn,

substrate	$2 \times 2 \times 1$	$3 \times 3 \times 1$	
Fe-Fe	3.679	3.677	
Fe-Co	3.775	3.774	
Fe-Ni	3.890	3.767	
Fe-Mo	3.265	3.268	
Fe-Ag	3.788	3.862	
Fe-V	3.056	3.222	

Table S1. The electronic spin moments (in μ_B) of reactive Fe atom in Fe-TM dual singe-metal atom catalysts with different supercell size of C₂N sheet.

Figure S1. Spin density distribution of Fe and TM bimetallic single-atom site catalysts on C₂N: (a) isolated Fe, (b) TM = Sc, (c) Ti, (d) V, (e) Cr, (f) Mn, (g) Fe, (h) Co, (i) Ni, (j) Cu, (k) Zn, (l) Y, (m) Zr, (n) Nb, (o) Mo, (p) Tc, (q) Ru, (r) Rh, (s) Pd, (t) Ag, (u) Cd, with the yellow and blue areas for the majority and minority spin, respectively. The isosurface values are set to 0.002 e/Å³. The spin moments of reaction Fe atom site are shown in μ_B .

Figure S2. Spin polarized partial density of states (PDOS) of d orbital of Fe atom on (a) isolated Fe SAC, (b) Fe-Fe, (c) Fe-V, and (d) Fe-Nb catalysts. The vertical blue line defines the d-band center of Fe. The Fermi level is set to zero.

Figure S3. Change of N₂ adsorption free energy ($\Delta G(*N_2)$) on Fe atom with the ICOHP of N \equiv N bond for the Fe-TM catalysts.

Figure S4. DOS of N₂ before and after adsorption and partial DOS of p and d orbitals of reaction Fe atom after N₂ interaction (left panel) and the COHP of the N \equiv N bond (right panel) on (a) isolated Fe SAC, (b) Fe-Fe, (c) Fe-Ag, (d) Fe-Zn, (e) Fe-Co, and (f) Fe-Mn catalysts. The Fermi level is set to 0.

Figure S5. Free-energy diagrams of eNRR through the distal (left panel), alternating (middle panel), and enzymatic pathways (right panel) catalyzed by (a) the isolated Fe SAC, (b) Fe-Fe, (c) Fe-Ag, (d) Fe-Mo, (e) Fe-Zn, and (f) Fe-Cu catalysts at zero and limiting potential.

ange a	and the entropy c	nange, respective	ry. Note that T is	s set to 298.15 K	, and
e energ	gies are in <i>eV</i> .				
	Species	$E_{ZPE} (\mathrm{eV})$	TS (eV)	E_{ZPE} -TS (eV)	
	Distal				
	*N ₂	0.206	0.163	0.043	
	*N ₂ H	0.452	0.205	0.247	
	*N ₂ H ₂	0.779	0.237	0.542	
	*N ₂ H ₃	1.027	0.361	0.666	
	*NH	0.329	0.099	0.230	

Table S2. Free energy corrections: E_{ZPE} and S represents the zero-point energy change and the entropy change, respectively. Note that T is set to 298.15 K, and all the

Species	$L_{ZPE}(\mathbf{cv})$	15 (01)	L_{ZPE} IS (CV)
Distal			
*N ₂	0.206	0.163	0.043
*N ₂ H	0.452	0.205	0.247
*N ₂ H ₂	0.779	0.237	0.542
*N ₂ H ₃	1.027	0.361	0.666
*NH	0.329	0.099	0.230
*NH ₂	0.670	0.132	0.538
*NH ₃	1.036	0.106	0.930
Alternating			
*N ₂	0.206	0.163	0.043
*N ₂ H	0.452	0.205	0.247
*NH-NH	0.816	0.210	0.606
*NH-NH ₂	1.115	0.231	0.884
*NH ₂ -NH ₂	1.497	0.185	1.312
*NH ₂ -NH ₃	1.633	0.328	1.305
*NH ₃	1.036	0.106	0.930
Enzymatic			
*N-*N	0.175	0.203	-0.028
*N-*NH	0.470	0.163	0.307
*NH-*NH	0.797	0.169	0.628
*NH-*NH ₂	1.149	0.120	1.029
*NH ₂ -*NH ₂	1.481	0.121	1.360
*NH ₂ -NH ₃	1.633	0.328	1.305
*NH ₃	1.036	0.106	0.930

	*→	*N-N→	*N-NH→	*N-NH ₂ →	*N-NH ₃ →	*NH→	*NH ₂ →	*NH ₃ →
catalysts	*N-N	*N-NH	*N-NH ₂	*N-NH ₃	*NH	*NH ₂	*NH3	*
Isolated Fe	-0.125	1.043	0.202	0.489	-0.930	-1.156	-1.254	0.753
Fe-Sc	-0.828	1.406	0.004	0.738	-0.956	-1.674	-0.380	0.739
Fe-Ti	-0.447	1.411	0.016	0.707	-0.978	-1.690	-0.825	0.829
Fe-V	-0.419	1.296	0.084	0.687	-0.922	-1.490	-1.011	0.798
Fe-Cr	-0.413	1.372	0.049	0.684	-0.996	-1.536	-0.904	0.767
Fe-Mn	-0.442	1.392	0.038	0.648	-0.89	-1.615	-0.897	0.789
Fe-Fe	0.211	0.764	0.014	0.669	-0.916	-1.615	-0.888	0.784
Fe-Co	-0.384	1.519	-0.186	0.680	-0.930	-1.598	-0.878	0.733
Fe-Ni	-0.382	1.359	0.021	0.657	-0.924	-1.091	-1.397	0.780
Fe-Cu	-0.135	0.952	0.025	0.670	-0.949	-1.620	-0.852	0.933
Fe-Zn	0.249	0.760	-0.001	0.689	-0.929	-1.617	-0.89	0.762
Fe-Y	-0.812	1.377	-0.043	0.735	-0.907	-1.659	-0.925	1.257
Fe-Zr	-0.430	1.345	0.024	0.762	-0.983	-1.666	-0.865	0.836
Fe-Nb	-0.428	1.348	-0.005	0.757	-0.910	-1.216	-1.377	0.854
Fe-Mo	0.238	0.680	0.038	0.723	-1.011	-1.553	-0.871	0.779
Fe-Tc	-0.410	1.394	-0.031	0.712	-0.895	-1.499	-1.05	0.802
Fe-Ru	-0.371	1.308	0.056	0.667	-0.941	-1.600	-0.864	0.768
Fe-Rh	-0.353	1.341	0.028	0.673	-0.915	-1.632	-0.881	0.762
Fe-Pd	0.070	1.112	-0.163	0.652	-1.119	-1.429	-0.876	0.769
Fe-Ag	0.236	0.738	0.051	0.616	-0.919	-1.613	-0.847	0.761
Fe-Cd	-0.330	1.539	-0.646	0.660	-0.889	-1.671	-0.851	1.211

Table S3. Free energy changes (in eV) of all elementary steps for distal mechanism catalyzed by isolated Fe SAC and Fe-TM catalysts. Numbers in red indicate the maximum free energy barrier among all elementary steps.

Figure S6. (a) Schematic structure of Fe SACs on C_2N with N_2 adsorbed on the neighboring TM atom (namely Fe-TM-N₂). Free-energy diagrams of eNRR through the distal pathways catalyzed by (b) Fe-Zn-N₂ and (c) Fe-Co-N₂ at 0 and limiting potential. (d) Relation between free energy change for *NN to *N-NH and spin moments of Fe active center with adsorbed N₂.

Table S4. Free energy changes (in eV) of all elementary steps for distal mechanism catalyzed by Fe-TM catalysts with TM atom as active site. Numbers in red indicate the maximum free energy barrier among all elementary steps.

1	*→	*N-N→	*N-NH→	*N-NH ₂ \rightarrow	*N-NH ₃ →	*NH→	*NH ₂ →	*NH ₃ →
substrate	*N-N	*N-NH	*N-NH ₂	*N-NH ₃	*NH	*NH ₂	*NH3	*
Fe-Fe	0.211	0.764	0.014	0.669	-0.916	-1.615	-0.888	0.784
Fe-Ni	-0.404	1.345	0.245	1.652	-1.751	-1.607	-1.315	0.858
Fe-Cu	-0.514	1.935	-0.247	2.204	-1.883	-1.994	-1.41	0.882
Fe-Zn	-0.065	1.644	-0.474	1.826	-2.162	-1.983	-1.127	1.364
Fe-Mo	-0.457	1.415	-0.59	-0.986	-0.273	-0.523	0.639	-0.202
Fe-Ag	-0.585	3.201	-0.989	2.944	-2.736	-0.875	-2.709	0.772

Figure S7. Geometry structures of all intermediates adsorbed on Mo atom for N_2 reduction to NH_3 catalyzed by Fe-Mo catalyst with Mo as active site.

Figure S8. Correlation of Gibbs free energy change of PDS for eNRR on Fe-TM catalysts with electronic spin moments of reactive TM atom

Figure S9. Charge transfer change of four fragments (C_2N , TM, Fe, intermediate) on (a) the Fe-Fe and (b) Fe-Zn catalysts with intermediate interaction relative to that of corresponding fragment on the clean catalyst surface. It noted that the polarized charges of adsorbed intermediate are defined as its charge transfer.

As shown in Figure S11a and b, when the N_2 and key intermediate *N-NH are adsorbed at Fe site, about 0.26 and 0.21 e are found to transfer from the substrate to intermediates, respectively. The neighboring C and N atoms in C_2N sheet donate most of electrons, and the Fe active center also takes part in the charge transfer. In contrast, the neighboring metal atom contributes a very minor charge.

Figure S10. Scaling relation between polarized charges of C_2N sheet and TM atom of Fe-TM catalysts with N_2 interaction.

Figure S11. (a) Electronic spin moments of C_2N sheet (M(C_2N) on Fe-TM substrate. (b) The difference of M(C_2N) (Δ M(C_2N)) between Fe-TM catalyst before and after N₂ interaction. Spin moment change of four fragments (C_2N , TM, Fe, *N₂) on (c) the N₂ adsorbed Fe-Fe and (d) Fe-Co catalysts relative to that of the clean catalyst surface.

- 1										
N ₂ adsorption	Fe-Sc	Fe-Ti	Fe-V	Fe-Cr	Fe-Mn	Fe-Fe	Fe-Co	Fe-Ni	Fe-Cu	Fe-Zn
without	4.092	5.548	6.026	6.306	8.034	7.438	5.781	5.162	3.335	3.775
with	3.431	4.996	5.967	6.389	7.530	3.709	5.310	1.760	2.376	0.089
N ₂ adsorption	Fe-Y	Fe-Zr	Fe-Nb	Fe-Mo	Fe-Tc	Fe-Ru	Fe-Rh	Fe-Pd	Fe-Ag	Fe-Cd
without	4.241	5.062	5.127	6.457	6.360	4.540	3.869	2.711	3.904	3.223
with	3.699	4.799	4.506	2.675	5.888	3.672	3.258	3.526	0.019	2.588

Table S5. The calculated total spin moments (in μ_B) of Fe-TM catalysts without and with N₂ adsorption.

Table S6. Comparison of total energy (in eV) of systems without and with total spin (μ_B) constraint.

systems	spin relaxation		spin constraint	
	spin total		spin	total
		energy		energy
Fe-Fe	7.438	-644.484	7	-644.478
Fe-Fe with N ₂	3.709	-661.363	7	-661.429
Fe-Zn	3.775	-638.110	4	-638.109
Fe-Zn with N ₂	0.089	-654.953	4	-655.006

Figure S12. Charge transfer (a, b) and spin moments change (c, d) of four fragments $(C_2N, TM, Fe, *N_2)$ on the Fe-Fe (a, c) and Fe-Zn (b, d) catalysts with N₂ interaction relative to that of corresponding fragment on the clean catalyst surface when setting the total spin of system with N₂ as that of clean system.

Without any spin limiting, the total spin moments of substrate are different from that of catalyst with N_2 adsorption for most of neighboring TM atoms due to the nonmagnetic N_2 interaction (see Table S5). To maintain spin-conservation, we set the total spin of Fe-TM catalysts (TM = Fe, Zn) with N_2 interaction as that of clean catalyst. As shown in Table S6, the energy difference between systems with and without spin constraint is negligible.

Similar to the systems without spin constraint, the C_2N play a crucial role in charge transfer when maintaining the total spin (Figure S12a and b). After N_2 interaction, the C_2N sheet accommodates most of the spin transferred from Fe active site (Figure S12c and d). In contrast, the neighboring TM atom merely hosts minimal spin. As a result, the synergetic effect between reactive Fe atom and neighboring C and N atoms in C_2N sheet is constructed. The spin-conservation rule is manipulated by the synergetic charge transfer, provided by the p-block C_2N sheet, and spin selection, preserved by transferring spin from metal center to C_2N .

Figure S13. H adsorption energy ($\Delta E(*H)$) on reaction Fe atom for considered Fe-TM catalysts with TM = 3d and 4d metal atoms. The horizontal red line defines the $\Delta E(*H)$ on isolated Fe SAC for comparison.

Figure S14. Free-energy diagrams for the HER on isolated Fe SAC and several Fe-TM catalysts.

Figure S15. The minimal energy path for (a) *N-NH formation and (b) *H formation on Fe-Fe catalyst containing $3H_2O$ and H_3O^+ , which is realized by scanning the total energy of system with the N-N···H (L_{N-H}) and Fe····H (L_{Fe-H}) distance. Insets show the atomic structures of the initial state (IS) and final state (FS).

Figure S16. The binding energy of Fe atom ($\Delta E(*Fe)$) anchored by cavity of C₂N as a function of neighboring TM atom. The horizontal red line defines the $\Delta E(*Fe)$ value of isolated Fe SACs.

To evaluate the effect of adjacent TM atom on the thermodynamics stability of Fe SACs, the binding energy of Fe atom is calculated by: $\Delta E(*Fe) = E(TM-C_2N) + E(Fe)$ - $E(Fe-TM-C_2N)$, where the $E(TM-C_2N)$, E(Fe), and $E(Fe-TM-C_2N)$ are the total energies of TM atom-adsorbed C₂N (namely TM-C₂N), free Fe atom, and Fe adsorbed on TM-C₂N systems. It should be noted that more positive $\Delta E(*Fe)$ indicates the monodispersed Fe catalysts with high stability, thermodynamically.

Figure S17. Schematic structure of Fe and TM atoms adsorbed on (a) the single hole and (b) two neighboring holes and (c) the total energy difference (ΔE) between them. It noted that the positive ΔE suggests that the formed Fe and TM bimetallic single-atom catalyst in (b) is more stable than the Fe-TM metal dimer in (a).