Supporting Information

Cation-exchange and oxygen vacancies triggered capacity in hierarchical a-

Ni_{1-x}Cu_xMoO₄@CC flexible electrodes for energy-storage applications

Sk. Khaja Hussain,^{†, ‡, #} B. N. Vamsi Krishna,^{†, #} and Jae Su Yu ^{†, *}

[†]Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea

[‡]Nanosensor Research Institute, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea

Author Information

[#] S.K.H. and B.N.V.K contributed equally to this work.

*Corresponding author

E-mail: jsyu@khu.ac.kr

Chemicals and material characterizations

The chemicals of nickel acetate (Ni(CH₃CO₂)₂·4H₂O), copper acetate (Cu(CH₃CO₂)₂·xH₂O), and ammonium molybdate tetrahydrate ((NH₄)₆Mo₇O₂₄·4H₂O) were purchased by Sigma Aldrich Co., South Korea. Polyvinylidene fluoride (PVDF; -(C₂H₂F₂)n-) and N-methyl-2-pyrrolidone (NMP; C₅H₉NO) were received from Daejung Chemicals Ltd., South Korea. The above chemicals were utilized in our experiments without any alterations in their purity.

The electrode samples were characterized by X-ray diffraction (XRD) analysis (Cu K α (λ = 1.54056 Å)) through the Mac Science M18XHF-SRA instrument to find out the pure crystallinity. High-resolution Raman spectroscopy (Research Leica DM250) with 514 nm laser excitation was used to measure the Raman spectra of the electrodes. Field-emission scanning electron microscope (FE-SEM; LEO SUPRA 55 Carl Zeiss) equipped with energy-dispersive X-ray spectroscopy (EDS) was used to investigate the surface morphologies of the electrodes. X-ray photoelectron spectroscopy (XPS; Thermo Multi-Lab 2000 System) was employed to identify the charges of the metal ions. Electron paramagnetic resonance spectroscopy (Bruker (EMXplus-9.5/2.7) was employed to identify the oxygen vacancies.

Electrochemical analysis

The electrochemical data for the flexible α -NiMoO₄@carbon cloth (CC) and α -Ni₁. _xCu_xMoO₄@CC (x = 1, 3, 5, and 7 mol%) electrodes were collected by IviumStat; IVIUM Technologies instrument in a three-electrode electrochemical system (25 °C). The loading masses of the materials on the CC in a 1 × 1 cm² area were ~3.1 ± 0.05 mg cm⁻² referred to as a working electrode. Ag/AgCl is the reference electrode and Pt wire is the counter electrode. Before electrochemical analysis, a freshly made 1 M aqueous KOH electrolyte solution was used.

Table S1. Three-electrode electrochemical performance and two-electrode stability, energy, and power density comparisons of the designed α -Ni_{0.95}Cu_{0.05}MoO₄@CC electrode and FHS device with the previously published reports of molybdenum and nickel-based composites.

Composite material	Preparation method	Electro lyte	Three- electrode performance	Cycling stability @ Retention	Energy and power densities	Ref.
CoMoO4- NiMoO4 NTs	Two-step hydrothermal method	3 M Koh	751 F g ⁻¹ at 1 A g ⁻¹	2000 cycles @ (94%)	E (30.86 Wh kg ⁻¹) P (4.85 kW kg ⁻¹)	S1
Carbon sphere@NiMoO4	A hydrothermal method	2M NaOH	268.8 F g ⁻¹ at 1 A g ⁻¹	2000 cycles @ (88.4%)	-	S2
NiMoO ₄ -PANI nanocomposite	A solvothermal method	PVA- KOH gel electrol yte	1214 F g ⁻¹ at 1 A g ⁻¹	5000 cycles @ (98.6%)	E (30.07 Wh kg ⁻¹) P (240 W kg ⁻¹)	S3
NiMoO ₄ nanorods	A facile solvothermal method	3 M Koh	670 F g ⁻¹ at 0.3 A g ⁻¹	3000 cycles @ (88%)	-	S4
NiMoO₄/CoMoO₄ nanorod arrays	Hydrothermal and electrochemical deposition methods	1 M KOH	778.1 F g ⁻¹ at 0.5 A g ⁻¹	-	E (33.1 Wh kg ⁻¹) P (3195 W kg ⁻¹)	S5
NiMoO ₄ nanorods on Ni foam	Hydrothermal route	6 M KOH	594 F g ⁻¹ at 1 A g ⁻¹	1000 cycles @ (56%)	E (18 Wh kg ⁻¹) P (704 W kg ⁻¹)	S 6
NiMoO ₄ nanospheres on Ni-foam	Hydrothermal route	3 M KOH	974.4 F g ⁻¹ at 1 A g ⁻¹	2000 cycles @ 5 A g ⁻¹	E (20.1 Wh kg ⁻¹) P (2100 W kg ⁻¹)	S7

NiMoO ₄ -Ag/rGO	Hydrothermal route	6 M KOH	566.4 C g ⁻¹ at 1 A g ⁻¹	8000 cycles @ (73.3%)	E (40.98 Wh kg ⁻¹) P (800 W kg ⁻¹)	S8
CoMoO ₄ - NiMoO ₄ Nanotubes	Hydrothermal method	2 M KOH	1079 F g ⁻¹ at 5 A g ⁻¹	1000 cycles @ (98.4%)	E (33 Wh kg ⁻¹) P (6000 W kg ⁻¹)	S9
CoMoO ₄ - NiMoO ₄ ·xH ₂ O	Chemical co- precipitation	2 M KOH	1039 F g^{-1} at 2.5 mA cm ⁻	1000 cycles @ (75.1%)	-	S10
NiMoO4@NiS2/ MoS2	Hydrothermal method	6 M KOH	970 F g ⁻¹ at 5 A g ⁻¹	5000 cycles @ (60%)	E (26.8 Wh kg ⁻¹) P (700 W kg ⁻¹)	S11
MoO ₃ nanobelts	A facile hydrothermal method	0.5 M Li ₂ SO ₄	369 F g ⁻¹ at 0.1 A g ⁻¹	500 cycles @ (95%)	-	S12
MoO ₃ nanorods	A facile hydrothermal method	1 M Na ₂ SO ₄	214 F g ⁻¹ at 0.1 A g ⁻¹	1000 cycles @ (71.7%)	-	S13
Layered MoO ₃ @C	Calcination process	1 M H ₂ SO ₄	331 F g ⁻¹ at 1 A g ⁻¹	1000 cycles @ (87.9%)	-	S14
rGO-wrapped MoO ₃ composites	A novel and simple method	1 M H ₂ SO ₄	617 F g ⁻¹ at 1 A g ⁻¹	6000 cycles @ (87.5%)	-	S15
ZnO@MoO ₃ core/shell nanocables	A simple electrochemica l method	1 M Na ₂ SO ₄	236 F g ⁻¹ at 5 mV s ⁻¹	1000 cycles @ (90%)	-	S16

MoO ₃ @PANI nanobelts	A simple and green approach	1 M H ₂ SO ₄	714 F g ⁻¹ at 1 mV s ⁻¹	3000 cycles @ (76.7%)	_	S17
WS ₂ /α-NiMoO ₄	Microwave hydrothermal and calcination processes	-	460 F g ⁻¹ at 1 A g ⁻¹	2000 cycles @ (92%)	-	S18
NCSe@NMO@r GO-NF	Hydrothermal method	2 M KOH	396.1 mAh g ⁻¹ at 1 A g ⁻¹	8000 cycles @ (89.4%)	E (63.2 Wh kg ⁻¹) P (7983.5 W kg ⁻¹)	S19
NiMoO4 arrays	Hydrothermal and calcination method	2 M KOH	-	4000 cycles @ (73.4%)	E (53.8 Wh kg ⁻¹) P (239 W kg ⁻¹)	S20
CoMoO ₄ @NiMo O ₄ core-shell nanosheet arrays	A facile two- step hydrothermal method	2 M KOH	-	3000 cycles @ (95%)	E (28.7 Wh kg ⁻¹) P (267 W kg ⁻¹)	S21
NiMoO ₄ nanoparticles//AC	Calcination	6 M KOH	1438 F g ⁻¹ at 1 A g ⁻¹	3000 cycles @ (92%)	E (30 Wh kg ⁻¹) P (403 W kg ⁻¹)	S22
Co ₃ O ₄ @NiMoO ₄ NSA//AC	Hydrothermal reaction	2 M KOH	1526 F g^{-1} at 3 mA cm ⁻²	-	E (37.8 Wh kg ⁻¹) P (482 W kg ⁻¹)	S23
NiMoO4	Hydrothermal in situ diffusion reaction	2 M KOH	864 F g ⁻¹ at 1 A g ⁻¹	1000 cycles @ (71%)	-	S24
CoMoO ₄ - NiMoO ₄ ·xH ₂ O	Chemical co- precipitation method	2 M KOH	1039 F g ⁻¹ at 2.5 mA cm ⁻²	1000 cycles @ (72.3%)	-	S25

P-doped Co _{0.21} Ni _{0.79} MoO ₄ - n	Calcination	2 M KOH	1127 F g ⁻¹ at 0.5 A g ⁻¹	-	E (49.2 Wh kg ⁻¹) P (747.7 W kg ⁻¹)	S26
PCNS@Co _x Ni _{1-x} MoO ₄	A hydrothermal process	2 M KOH	1127 F g ⁻¹ at 0.5 A g ⁻¹	5000 cycles @ (101%)	E (36.7 Wh kg ⁻¹) P (346.4 W kg ⁻¹)	S27
Co ₃ O ₄ @NiMoO ₄ flower-like hybrid arrays	Hydrothermal and post- annealing treatment	2 M KOH	636.8 C g ⁻¹ at 5 mA cm ⁻²	2000 cycles @ (84.1%)	E (58.5 Wh kg ⁻¹) P (389 W kg ⁻¹)	S28
MoO ₃ hybrids	A sol–gel method	1 M H ₂ SO ₄	135 F g ⁻¹ at 1.3 A g ⁻¹	1000 cycles @ (82%)	-	S29
CoMoO4@PPy NHs	-	2 M KOH	1203 F g ⁻¹ at 2 A g ⁻¹	5000 cycles @ (96%)	E (40.3 Wh kg ⁻¹) P (749 W kg ⁻¹)	S30
NiMoO _{4-x} @C	An annealing process	2 M KOH	1720 F g ⁻¹ at 1 mA cm ⁻²	6000 cycles @ (84.5%)	E (51.6 Wh kg ⁻¹) P (203.95 W kg ⁻¹)	S31
α- Ni _{0.95} Cu _{0.05} MoO ₄ @CC	A facile hydrothermal method	1 M KOH	342 C g ⁻¹ (1088 F g ⁻¹) at 1 A g ⁻¹	FAS device @10000 cycles (91%)	E (83 Wh kg ⁻¹) P (10.5 kW kg ⁻¹)	Prese nt Work

References

- S1. Q. Yang and S.-Y. Lin, *RSC Adv.*, 2016, **6**, 10520-10526.
- S2. C. Wei, Y. Huang, J. Yan, X. Chen and X. Zhang, *Ceram. Int.*, 2016, **42**, 15694-15700.
- S3. H. Gao, F. Wu, X. Wang, C. Hao and C. Ge, *Int. J. Hydrogen Energy*, 2018, **43**, 18349-18362.
- S4. E. R. Ezeigwe, P. S. Khiew, C. W. Siong, I. Kong and M. T. T. Tan, *Ceram. Int.*, 2017, **43**, 13772-13780.
- S5. B. Yu, G. Jiang, W. Xu, C. Cao, Y. Liu, N. Lei, U. Evariste and P. Ma, *J. Alloys Compd.*, 2019, **799**, 415-424.
- S6. N. S. Neeraj, B. Mordina, A. K. Srivastava, K. Mukhopadhyay and N. E. Prasad, *Appl. Surf. Sci.*, 2019, **473**, 807-819.
- S7. D. Cai, D. Wang, B. Liu, Y. Wang, Y. Liu, L. Wang, H. Li, H. Huang, Q. Li and T. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 12905-12910.
- S8. B. Huang, D. Yao, J. Yuan, Y. Tao, Y. Yin, G. He and H. Chen, *J. Colloid Interface Sci.*, 2022, **606**, 1652-1661.
- S9. Z. Yin, Y. Chen, Y. Zhao, C. Li, C. Zhu and X. Zhang, J. Mater. Chem. A, 2015, **3**, 22750-22758.
- S10. M.-C. Liu, L.-B. Kong, C. Lu, X.-J. Ma, X.-M. Li, Y.-C. Luo and L. Kang, *J. Mater. Chem. A*, 2013, **1**, 1380-1387.
- S11. D. Chen, M. Lu, L. Li, D. Cai, J. Li, J. Cao and W. Han, J. Mater. Chem. A, 2019, 7, 21759-21765.
- S12. J. Jiang, J. Liu, S. Peng, D. Qian, D. Luo, Q. Wang, Z. Tian and Y. Liu, J. Mater. Chem. A, 2013, 1, 2588-2594.
- S13. Z. Cui, W. Yuan and C. M. Li, J. Mater. Chem. A, 2013, 1, 12926-12931.
- S14. H. Ji, X. Liu, Z. Liu, B. Yan, L. Chen, Y. Xie, C. Liu, W. Hou and G. Yang, *Adv. Funct. Mater.*, 2015, 25, 1886-1894.
- S15. X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan and H. Zhang, Adv. Mater., 2015, 27, 4695-4701.
- S16. G.-R. Li, Z.-L. Wang, F.-L. Zheng, Y.-N. Ou and Y.-X. Tong, J. Mater. Chem., 2011, **21**, 4217-4221.
- S17. F. Jiang, W. Li, R. Zou, Q. Liu, K. Xu, L. An and J. Hu, *Nano Energy*, 2014, **7**, 72-79.
- S18. S. K. Ray, B. Pant, M. Park, J. Hur and S. W. Lee, *Ceram. Int.*, 2020, **46**, 19022-19027.
- S19. J. Acharya, B. Pant, G. P. Ojha and M. Park, J. Mater. Chem. A, 2022, 10, 7999-8014.
- S20. C. Qing, Y. Liu, X. Sun, X. OuYang, H. Wang, D. Sun, B. Wang, Q. Zhou, L. Xu and Y. Tang, *RSC Adv.*, 2016, **6**, 67785-67793.
- S21. Z. Zhang, H. Zhang, X. Zhang, D. Yu, Y. Ji, Q. Sun, Y. Wang and X. Liu, *J. Mater. Chem. A*, 2016, **4**, 18578-18584.
- S22. V. S. Budhiraju, R. Kumar, A. Sharma and S. Sivakumar, *Electrochim. Acta*, 2017, 238, 337-348.
- S23. W. Hong, J. Wang, P. Gong, J. Sun, L. Niu, Z. Yang, Z. Wang and S. Yang, J. Power Sources, S2014, 270, 516-525.
- S24. Z. Yin, S. Zhang, Y. Chen, P. Gao, C. Zhu, P. Yang and L. Qi, J. Mater. Chem. A, 2015, **3**, 739-745.
- S25. M.-C. Liu, L.-B. Kong, C. Lu, X.-J. Ma, X.-M. Li, Y.-C. Luo and L. Kang, J. Mater. Chem. A, 2013, 1, 1380-1387.
- S26. T. Xing, Y. Ouyang, Y. Chen, L. Zheng, C. Wu and X. Wang, J. Energy Storage, 2020, 28, 101248.
- S27. J. Lin, L. Yao, Z. Li, P. Zhang, W. Zhong, Q. Yuan and L. Deng, *Nanoscale*, 2019, **11**, 3281-3291.
- S28. Y. Zhang, Y. Yang, L. Mao, D. Cheng, Z. Zhan and J. Xiong, *Mater. Lett.*, 2016, **182**, 298-301.
- S29. Q. Mahmood, W. S. Kim and H. S. Park, *Nanoscale*, 2012, **4**, 7855-7860.
- S30. A. Liu and J. Tang, *Ceram. Int.*, 2020, **46**, 10893-10902.
- S31. P. Wang, X. Ding, R. Zhe, T. Zhu, C. Qing, Y. Liu and H.-E. Wang, *Nanomater.*, 2022, **12**, 1094.

Fig. S1. (A-C) FE-SEM images of α -Ni_{0.93}Cu_{0.07}MoO₄@CC electrode.

Fig. S2. (A) CV curves and (B) GCD profiles of the α -NiMoO₄@CC electrode at different scan rates (3 to 33 mV s⁻¹) and current densities (1 to 10 A g⁻¹), respectively.

Fig. S3. (A) CV curves and (B) GCD profiles of the α -Ni_{0.99}Cu_{0.01}MoO₄@CC electrode at different scan rates (3 to 30 mV s⁻¹) and current densities (1 to 12 A g⁻¹), respectively.

Fig. S4. (A) CV curves and (B) GCD profiles of the α -Ni_{0.97}Cu_{0.03}MoO₄@CC electrode at different scan rates (3 to 33 mV s⁻¹) and current densities (1 to 12 A g⁻¹), respectively.

Fig. S5. (A) CV curves and (B) GCD profiles of the α -Ni_{0.93}Cu_{0.07}MoO₄@CC electrode at different scan rates (3 to 33 mV s⁻¹) and current densities (1 to 12 A g⁻¹), respectively.

Fig. S6. Calculated *b* value of the α -Ni_{0.95}Cu_{0.05}MoO₄@CC electrode from the cathodic peak currents.

Fig. S7. (A) CV curves at different scan rates (10 to 100 mV s⁻¹), (B) GCD curves at different current densities (1 to 7 A g⁻¹), and (C) C_s values of the AC@CC electrode.

Fig. S8. (A) Digital photographic images. (B) CV curves (at 50 mV s⁻¹) of the α -Ni_{0.95}Cu_{0.05}MoO₄@CC//AC@CC FHS device in flat and bending positions.