Electronic Supplementary Information

Coupling Novel Li₇TaO₆ Surface Buffering with Bulk Ta-Doping to Achieve Long-Life Sulfide-Based All-Solid-State Lithium Batteries

Jie Shi^a, Zhihui Ma^a, Kun Han^a, Qi Wan^b, Di Wu^a, Xuanhui Qu^a, Ping Li^{a*}

^a Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China.

^b School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.

* Corresponding author.

E-mail address: ustbliping@126.com.

Fig. S1. SEM images of (a) P-NCM811, (b) L7TaO-0.5 wt%, (c) L7TaO-1 wt%, (d) L7TaO-2 wt% and (e) L7TaO-15 wt%.

Fig. S2. HRTEM images of (a, b) P-NCM811 at different regions.

Fig. S3. HRTEM images of (a, b) L7TaO-1 wt% at different regions (Images of 1 and 2 correspond to the position 1,2 of (b)). The distance of the two yellow dotted lines represents the thickness of the buffering layer.

Fig. S4. HRTEM images of (a, b) L7TaO-0.5 wt%, (c, d) L7TaO-2 wt% and (e, f) L7TaO-15 wt% at different regions. The distance of the two yellow dotted lines represents the thickness of the buffering layer.

Fig. S5. The XRD patterns of obtained Li_7TaO_6 .

Fig. S6. XRD patterns and Rietveld analysis of (a) P-NCM811, (b) L7TaO-0.5 wt%, (c) L7TaO-1 wt%, (d) L7TaO-2 wt% and (e) L7TaO-15 wt% materials.

Fig. S7. The evolutions of XRD Rietveld refinement data for P-NCM811 and L7TaO-Q wt% (Q = 0.5, 1, 2 and 15) materials: (a) lattice parameters a, (b) lattice parameters c, (c) lattice parameters V and (d) the Li⁺/Ni²⁺ mixing degree.

Fig. S8. (a) Li 1s and (b) O 1s XPS spectra of P-NCM811 and L7TaO-Q wt% (Q = 0.5, 1, 2 and 15) materials.

Fig. S9. XPS spectra evolution of (a) summary spectra, (b) Ni 2p, (c) Co 2p and (d) Mn 2p versus etching depth.

Fig. S10. Comparison of charge-discharge curves of the P-NCM811 and L7TaO-Q wt% (Q = 0.5, 1 and 2) at different current densities ($1C = 170 \text{ mA g}^{-1}$), which clearly show the electrode polarization trends. (a) 0.2C, (b) 0.5C, (c) 0.8C, (d) 1C, (e) 2C and (f) 3C.

Fig. S11. Comparison of charge-discharge curves of the P-NCM811 and L7TaO-1 wt% at different current densities: (a) 0.1C, (b) 0.2C, (c) 0.5C, (d) 0.8C and (e) 2C. $(1C = 170 \text{ mA g}^{-1})$

Fig. S12. The discharge curves of (a) L7TaO-0.5 wt% and (b) L7TaO-2 wt% under various current densities. $(1C = 170 \text{ mA g}^{-1})$

Fig. S13. The dQ/dV curves of (a) L7TaO-0.5 wt% and (b) L7TaO-2 wt% at different C-rates. (1C = 170 mA g⁻¹)

Fig. S14. Comparison of the electrochemical performance of P-NCM811 and L7TaO-1 wt% in ASSLBs at 2.0-3.6 V (*vs.* Li⁺/Li-In) (30 °C). (a) The first charge-discharge profiles of the ASSLBs at 0.1C, and the initial Coulombic Efficiencies (CE). (b) Specific discharge capacities at different C-rates versus the cycle number ($1C = 170 \text{ mA g}^{-1}$). (c) Capacity retentions curves at different C-rates.

Fig. S15. Charge-discharge curves of (a) P-NCM811 and (b) L7TaO-1 wt% at 1 C in selected cycles, which clearly show the polarization trends.

Fig. S16. Diffusion coefficients of Li⁺ ions calculated from the GITT curves as a function of voltage during the 2 nd (a) charge and (b) discharge process.

Fig. S17. SEM images at different magnifications of the cathode (a–d) in the pristine state and (e–l) after 200 cycles at 1C rate and 30 °C: (e–h) P-NCM811 and (i–l) L7TaO-1 wt%.

Fig. S18. Comparison of relative amounts of the S 2p/P 2p components for the cathodes after 200 cycles at 1C rate and 30 °C (see corresponding spectra in Fig. 7d, g) together with the pristine LPSC1 as a reference.

Material		ttice parame		c/a	R _p (%)	R _{wp} (%)	Ni ²⁺ in Li ⁺ laver (%)	I ₍₀₀₃₎ /I ₍₁₀₄₎
		<i>c</i> [A]	V[A]					
P-NCM811	2.87121	14.20076	101.385	4.94591	1.91	2.48	7.14	2.08318
L7TaO-0.5 wt%	2.86955	14.20179	101.275	4.94913	1.97	2.54	5.76	1.96489
L7TaO-1 wt%	2.86946	14.20385	101.283	4.95001	2.09	2.73	3.86	2.18367
L7TaO-2 wt%	2.86897	14.20432	101.252	4.95102	2.08	2.68	3.69	2.15563
L7TaO-15 wt%	2.86534	14.20569	100.934	4.95784	3.61	5.79	3.19	2.21828

Table S1. XRD Rietveld refinement results of P-NCM811 and L7TaO-Q wt% (Q = 0.5, 1, 2 and 15)materials.

Cathada	R _s (Ω)	R _e	(Ω)	$R_{ m ct}\left(\Omega ight)$	
Cathout	Before	After	Before	After	Before	After
P-NCM811	29.52	33.98	1.12	1.26	28.10	53.01
L7TaO-1 wt%	28.07	28.71	1.00	1.56	19.47	25.47

Table S2. Simulated results for the Nyquist plots.

Cathode .	D_{Li^+} in the char	rge region/ cm ² s ⁻¹	$D_{\rm Li^+}$ in the discharge region/ cm ² s ⁻¹		
	1 st	2 nd	1 st 2 nd		
P-NCM811	7.29×10 ⁻¹³	4.25×10 ⁻¹³	4.19×10 ⁻¹³	3.34×10 ⁻¹³	
L7TaO-1 wt%	1.28×10 ⁻¹²	1.09×10 ⁻¹²	9.76×10 ⁻¹³	6.92×10 ⁻¹³	

Table S3. Li^+ diffusion coefficient D_{Li^+} of P-NCM811 and L7TaO-1 wt% in the charge and
discharge regions.

Ref.	Cathode	Coating	Sulfide solid electrolyte	Temperature & Voltage	Active material loading mass (mg cm ⁻²)	Initial discharge capacity (mAh g ⁻¹) & Coulombic efficiency	Cycle stability	Areal capacity (mAh cm ⁻²)
							134.7 mAh g ⁻¹ & 102.6% (1C, 100 cycles);	
				30°C & 2.0-3.8 (V vs. Li ⁺ /Li-In)	8.92	203 (0.1C) & 85.4%	125.9 mAn g $^{\circ}$ & 94.4 % (1C, 500 cycles);	
Our I	[iNiCoMnO.	² Li ₇ TaO ₆					94.5 mAh g^{-1} & 72% (1C, 2000 cycles);	
work	(NCM811)		Li ₆ PS ₅ Cl				85.8 mAh g ⁻¹ & 65.4% (1C, 3000 cycles);	1.52 (1C)
	· · ·						85.1 mAh g ⁻¹ & 64.8% (1C, 4000 cycles);	
							84.3 mAh g ⁻¹ & 64.2% (1C, 5000 cycles);	
							80.2 mAh g ⁻¹ & 61.1% (1C, 5650 cycles).	
[1]	NCM811	LiNbO ₃	Li ₆ PS ₅ Cl	30°C & 2.5-4.0	4.00	111.7 (0.05C) &	100.2 mAh g ⁻¹ & 89.7% (0.05C, 100 cycles)	0.80 (1C)
[1]	INCIMOTT			(V vs. Li ⁺ /Li)		66.8%		
[2]	NCM811	11 LiOH	Li ₆ PS ₅ Cl	25°C & 2.5-4.2	5.53	158.9 (0.1C) &	$\sim 130 \text{ mAb } \sigma^{-1} \& 90\% (0.1C, 600 \text{ cycles})$	1.10(1C)
[~]	itemori			(V vs. Li ⁺ /Li-In)		$\sim 64\%$		1.10 (10)
[3] NCM811	NCM811	No coating	Lis PS (Clus	25°C & 2.1-3.8	8.92	156 8 (0.05C) & 76%	$108.6 \text{ mAb } \text{m}^{-1}$ & 87.7% (0.2C, 200 cycles)	na
[~]	1,011011	(clean surface) $(V vs. Li^+/Li-In)$	0.72			11.00		
[4] NCM811	NCM811	CM811 LiCoO ₂ - 3	35°C & 2.1-3.78	10.23	10.23 182.4 (0.1C) & n.a.	~ 128 mAh g^{-1} & 80% (0.3C, 585 cycles)	2.05 (1C)	
	LiNbO ₃		(V vs. Li ⁺ /Li-In)	10.20		120 mail g & 6076 (0.50, 565 Cycles)	1.00 (10)	

Table S4. Summary comparison of electrochemical properties of our work with reported Ni-rich oxide cathodes in sulfide ASSLBs.

[5]	NCM811	LiNbO ₃	$Li_{10}GeP_2S_{12}$	35°C & 2.1-3.78 (V <i>vs.</i> Li ⁺ /Li-In)	10.23	162 (0.1C) & 85.9%	$\sim 105 \text{ mAh g}^{\text{-1}}$ & 77.9% (0.5C, 50 cycles)	2.05 (1C)
[6]	NCM811	Li ₃ PO ₄	Li ₁₀ GeP ₂ S ₁₂	25°C & 2.1-3.9 (V vs. Li ⁺ /Li-In)	8.92	170.6 (0.1C) & 75.1%	96.1 mAh g ⁻¹ & 58.9% (0.2C, 300 cycles)	n.a.
[7]	LiNi _{0.88} Co _{0.09} Mn _{0.03} O ₂	N ₂ /CS ₂ sulfide layer	Li ₆ PS ₅ Cl	33°C & 1.5-2.8 (V vs. Li ⁺ /LTO)	1.27	200.7 (0.1C) & 77.7%	131.2 mAh g ⁻¹ & 87% (1C, 500 cycles)	0.25 (1C)
[8]	$LiNi_{0.85}Co_{0.10}Mn_{0.05} \\ O_2$	ZrO ₂	Li ₆ PS ₅ Cl	45°C & 1.35-2.75 (V vs. Li ⁺ /LTO)	11.30	204 (0.1C) & 89%	156 mAh g ⁻¹ & 83% (0.2C, 160 cycles)	2.15 (1C)
[9]	$LiNi_{0.85}Co_{0.10}Mn_{0.05} \\ O_2$	HfO ₂	Li ₆ PS ₅ Cl	45°C & 1.4-2.8 (V vs. Li ⁺ /LTO)	10.55	200 (0.1C) & 87.8%	139.4 mAh g ⁻¹ & 82% (0.5C, 70 cycles)	2.00 (1C)
[10]	$LiNi_{0.82}Co_{0.12}Mn_{0.06} \\ O_2$	LiTaO3	Li ₆ PS ₅ Cl	30°C & 1.9-3.7 (V <i>vs.</i> Li ⁺ /Li-In)	5.97	202.1 (0.05C) & 72.4%	~ 167.7 mAh g ⁻¹ & 83% (0.2C, 30 cycles) (1.9-3.9 V vs. Li ⁺ /Li-In))	1.01 (1C)
[11]	$\begin{array}{c} Li(Ni_{0.9}Co_{0.05}Mn_{0.05})\\ \\ _{0.8}Co_{0.2}O_{2} \end{array}$	Al ₂ O ₃ -LiAlO ₂	$\begin{array}{c} Li_{9.54}Si_{1.7}P_{1.44}\\ S_{11.7}Cl_{0.3} \end{array}$	45°C & 2.1-3.68 (V <i>vs.</i> Li ⁺ /Li-In)	36.94	158.6 (0.2C) & 88.3%	136.75 mAh g ⁻¹ & 96.3% (1C, 500 cycles)	7.39 (1C)
[12]	$\begin{array}{c} LiNi_{0.70}Co_{0.15}Mn_{0.15}\\ O_2(NCM701515) \end{array}$	Al ₂ O ₃ -LiAlO ₂	Li ₆ PS ₅ Cl	25°C & 2.0-3.7 (V vs. Li ⁺ /Li-In)	10.39	154 (0.1C) & 70.4%	75 mAh g ⁻¹ & 54% (0.25C, 100 cycles)	2.08 (1C)
[13]	NCM701515	$Li_4Ti_5O_{12}$	Li ₆ PS ₅ Cl	25°C & 2.0-3.7 (V vs. Li ⁺ /Li-In)	10.39	135 (0.1C) & 70.4%	64.8 mAh g ⁻¹ & 48% (0.25C, 100 cycles)	2.08 (1C)
[14]	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ (NCM622)	Li ₂ CO ₃ -LiNbO ₃	Li ₆ PS ₅ Cl	45°C & 1.35-2.85 (V vs. Li ⁺ /LTO)	8.92	180 (0.2C) & 90%	82 mAh g ⁻¹ & 45.5% (0.2C, 200 cycles)	1.61 (1C)
[15]	NCM622	Li _{0.35} La _{0.55} TiO ₃	Li ₆ PS ₅ Cl	25°C & 2.2-3.7 (V vs. Li ⁺ /Li-In)	6.40	179.9 (0.05C) & 78.1%	152.1 mAh g ⁻¹ & 84.5% (0.1C, 100 cycles)	1.28 (1C)

[16]	NCM622	LiZr ₂ (PO ₄) ₃	Li ₆ PS ₅ Cl	30°C & 2.0-3.7 (V vs. Li ⁺ /Li-In)	8.92	145.6 (0.1C) & 79.4%.	117.4 mAh g ⁻¹ & 86.2% (0.2C, 100 cycles)	n.a.
[17]	NCM622	TiNb ₂ O ₇	$Li_{10}GeP_2S_{12}$	30°C & 2.1-3.8 (V vs. Li ⁺ /Li-In)	9.91	180.3 (0.05C) & 86.3%	~ 145 mAh g ⁻¹ & 92.2% (0.1C, 140 cycles)	1.78 (1C)
[18]	NCM622	Li _{1.4} Al _{0.4} Ti _{1.6} (P O ₄) ₃	$Li_{10}SnP_2S_{12}$	25°C & 2.2-3.7 (V vs. Li ⁺ /Li-In)	7.13	152.1 (0.05C) & 86.4%	147.8 mAh g ⁻¹ & 87.6% (0.1C, 100 cycles)	n.a.
[19]	NCM622	LiNbO ₃	$\begin{array}{c} Li_{9.54}Si_{1.7}P_{1.44}\\ S_{11.7}Cl_{0.3} \end{array}$	40°C & 2.1-3.68 (V vs. Li ⁺ /Li-In)	10.23	175.7 (0.1C) & 88.7%.	147 mAh g ⁻¹ & 91.3% (0.5C, 100 cycles)	2.05 (1C)
[20]	NCM622	LiNbO ₃ -Li ₂ CO ₃	β-Li ₃ PS ₄	25°C & 1.35-2.85 (V vs. Li ⁺ /LTO)	8.92	136 (0.1C) & 87%	~ 125 mAh g ⁻¹ & 91% (0.1C, 100 cycles)	1.61 (1C)
[21]	NCM622	Li ₂ CuO ₂ -CuO	$Li_7P_2S_8I$	25°C & 2.38-3.68 (V vs. Li ⁺ /Li-In)	n.a.	123 (0.05C) & n.a.	105. mAh g ⁻¹ & 86% (0.05C, 20 cycles)	n.a
[22]	NCM622	LiNbO ₃	Li ₇ P ₂ S ₈ I	25°C & 2.38-3.68 (V vs. Li ⁺ /Li-In)	n.a.	135.1 (0.1C) & n.a.	~120 mAh g ⁻¹ & 84.4% (0.1C, 20 cycles)	n.a

References

- J. Zhang, H. Zhong, C. Zheng, Y. Xia, C. Liang, H. Huang, Y. Gan, X. Tao and W. Zhang, J. Power Sources, 2018, 391, 73.
- [2] Y. Zhang, X. Sun, D. Cao, G. Gao, Z. Yang, H. Zhu and Y. Wang, *Energy Storage Mater.*, 2021, 41, 505.
- [3] S. Deng, Q. Sun, M. Li, K. Adair, C. Yu, J. Li, W. Li, J. Fu, X. Li, R. Li, Y. Hu, N. Chen, H. Huang, L. Zhang, S. Zhao, S. Lu and X. Sun, *Energy Storage Mater.*, 2021, 35, 661.
- [4] X. Li, Q. Sun, Z. Wang, D. Song and L. Zhu, J. Power Sources, 2020, 456, 227997.
- [5] X. Li, L. Jin, D. Song, H. Zhang, X. Shi, Z. Wang, L. Zhang and L. Zhu, *J. Energy Chem.*, 2020, 40, 39.
- [6] S. Deng, X. Li, Z. Ren, W. Li, J. Luo, J. Liang, J. Liang, M. N. Banis, M. Li, Y. Zhao, X. Li, C. Wang, Y. Sun, Q. Sun, R. Li, Y. Hu, H. Huang, L. Zhang, S. Lu, J. Luo and X. Sun, *Energy Storage Mater.*, 2020, 27, 117.
- [7] Y. Wang, Z. Wang, D. Wu, Q. Niu, P. Lu, T. Ma, Y. Su, L. Chen, H. Li and F. Wu, *eScience*, 2022.
- [8] Y. Ma, J. H. Teo, F. Walther, Y. Ma, R. Zhang, A. Mazilkin, Y. Tang, D. Goonetilleke, J. Janek,
 M. Bianchini and T. Brezesinski, *Adv. Funct. Mater.*, 2022, **32**, 2111829.
- [9] D. Kitsche, Y. Tang, Y. Ma, D. Goonetilleke, J. Sann, F. Walther, M. Bianchini, J. Janek and T. Brezesinski, ACS Applied Energy Materials, 2021, 4, 7338.
- [10] J. S. Lee and Y. J. Park, ACS Appl. Mater. Interfaces, 2021, 13, 38333.
- [11]X. Li, Y. Sun, Z. Wang, X. Wang, H. Zhang, D. Song, L. Zhang and L. Zhu, *Electrochim. Acta*, 2021, **391**, 138917.
- [12]R. S. Negi, Y. Yusim, R. Pan, S. Ahmed, K. Volz, R. Takata, F. Schmidt, A. Henss and M. T. Elm, Adv. Mater. Interfaces. 2022, 9, 2101428.
- [13] R. S. Negi, P. Minnmann, R. Pan, S. Ahmed, M. J. Herzog, K. Volz, R. Takata, F. Schmidt, J.

Janek and M. T. Elm, Chem. Mater., 2021, 33, 6713.

- [14]F. Walther, F. Strauss, X. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski and J. Janek, *Chem. Mater.*, 2021, **33**, 2110.
- [15]Z. Fan, J. Xiang, Q. Yu, X. Wu, M. Li, X. Wang, X. Xia and J. Tu, ACS Appl. Mater. Interfaces, 2022, 14, 726.
- [16]X. Sun, L. Wang, J. Ma, X. Yu, S. Zhang, X. Zhou and G. Cui, ACS Appl. Mater. Interfaces, 2022, 14, 17674.
- [17]N. Sun, Y. Song, Q. Liu, W. Zhao, F. Zhang, L. Ren, M. Chen, Z. Zhou, Z. Xu, S. Lou, F. Kong, J. Wang, Y. Tong and J. Wang, *Adv. Energy Mater.*, 2022, 2200682.
- [18] X. Li, Z. Jiang, D. Cai, X. Wang, X. Xia, C. Gu and J. Tu, Small, 2021, 17, 2103830.
- [19]X. Li, W. Peng, R. Tian, D. Song, Z. Wang, H. Zhang, L. Zhu and L. Zhang, *Electrochim. Acta*, 2020, 363, 137185.
- [20]A. Y. Kim, F. Strauss, T. Bartsch, J. H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann and T. Brezesinski, *Chem. Mater.*, 2019, **31**, 9664.
- [21] S. Jung, R. Rajagopal and K. Ryu, Mater. Chem. Phys., 2021, 270, 124808.
- [22] Y. Kim, R. Rajagopal, S. Kang and K. Ryu, Chem. Eng. J., 2020, 386, 123975.