Supporting Information for Manuscript Entitled

Spherical Micelle-Driven Deposition of High-Speed Impacting Water Droplets on

Superhydrophobic Surfaces

Yue Jiang ${ }^{\dagger}{ }^{\dagger}$, Meina Wang †, Jinchao Wei ‡, Yaxun Fan ${ }^{*}{ }^{\text {, }}$, and Yilin Wang ${ }^{*, t, \S}$
${ }^{\dagger}$ CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, and
${ }^{\ddagger}$ Analysis and Test Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
§University of Chinese Academy of Sciences, Beijing 100049, P. R. China
*Corresponding authors: yxfan@iccas.ac.cn; yilinwang@iccas.ac.cn

Supplementary Figures

Fig. S1 Environmental scanning electron microscope (ESEM) images of the microscopic structures of the copper superhydrophobic surface. Insert: water contact angle is $156.9 \pm 2.6^{\circ}$, ensuring the superhydrophobicity of the surface.

Fig. $\mathbf{S 2}$ Contact angle of 25.0 mM TAAB-n/SDS droplets on a superhydrophobic surface.

Fig. S3 ESI mass spectra of $25.0 \mathrm{mM}\left(\mathrm{A}_{1}\right)$ TAAB-2/SDS, $\left(\mathrm{A}_{2}\right)$ TAAB-4/SDS and $\left(\mathrm{A}_{3}\right)$ TAAB-6/SDS at $X_{\text {TAAB-n }}=0.30$ in negative ion mode.

Captions for Supplementary Movies

Supplementary Movie S1. Videos of the impacting behavior of 25.0 mM TAAB- $\mathrm{n} / \mathrm{SDS}(\mathrm{n}=2,4,6$) water droplets at the different molar ratios $\left(X_{\text {TAAB-n }}=0,0.1,0.3,0.7\right.$. 1.0) on a superhydrophobic surface (the impacting velocity is $2.42 \mathrm{~m} \cdot \mathrm{~s}^{-1}$).

Supplementary Movie S2. Videos of 25.0 mM TAAB-4/SDS droplets ($\left(X_{\text {TAAB-4 }}=0.3\right.$) impacting on superhydrophobic surface from the different heights (40,20 and 10 cm), corresponding to the velocity of $2.80,1.98$ and $1.40 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, respectively.

