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Simulation details

A sodium polyacrylate molecule (PANa) was represented by a 22-residue polymer chain. This molecule is
completely deprotonated. The negative charges of the 22 carboxylate groups are compensated by sodium cations.
Cellulose molecules consisting of 6 glucose monomers, denoted CNF, were used.

To compare the water absorption characteristics of hydrogels, two hydrogel model systems, CNF/PANa, (6 PANa +
1 CNF-COOH + 8000 H,0), and CNF/PANa/LiCl (6 PANa + 1 CNF-COOH + 15 LiCl + 8000 H,0), were built. In all cases,
at the beginning of the simulation, the energy of the model system was minimized. After that, a molecular dynamics
of 1000 ps at constant temperature (300 K) and pressure (1 atm) (NPT) was performed, which brought the system
into a reasonable preequilibrated configuration. After that, a further 2000 ps NVT ensemble molecular dynamics
simulation was conducted at 300 K to track changes in the system.

In this work, Packmol was used to build the initial configuration of all the model systems. LAMMPS and PCFF force
fields were used to perform the molecular simulations. The time step was fixed at 1.0 fs, and the temperature and
pressure were controlled by the Nosé—Hoover thermostat-barostat. A van der Waals interaction cutoff of 1.5 nm
was employed, and the PPPM method was used to account for the long-range electrostatic interactions. The atomic

coordinates were saved every 1 ps for further analysis.

Model

The model of (a) CNF and (b) sodium polyacrylate molecule (PANa).
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Figure S1. XRD pattern of FeCo-ONS.
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Figure S2. N, adsorption-desorption isotherms of FeCo-ONS.
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Figure S3. Chronoamperometry curves of FeCo-ONS, RuO, and Co30,.
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Figure S4. The (a) SEM, (b) TEM and (c) EDS mapping of FeCo-ONS after 2000 CV cycles.
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Figure S5. The (a) Co 2p and (b) O 1s XPS spectra of FeCo-ONS after 2000 CV cycles.
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Figure S6. XPS spectra of CNF, PANa, CNF/PANa, CNF-FH.
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Figure S7. C 1 s XPS spectra of PANa.
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Figure S8. C 1 s XPS spectra of CNF/PANa.
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Figure S9. C 1s XPS spectra of CNF-FH.
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Figure S10. EDS mapping of CNF.
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Figure S11. EDS mapping of PANa.
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Figure S12. EDS mapping of CNF/PANa.
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57 Figure S13. EDS mapping of CNF-FH.
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59 Figure S14. The element distribution of CNF, PANa, CNF/PANa and CNF-FH.
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Figure S16. (a) Photos of PANa, CNF/PANa and CNF-FH. (b) Photos of PANa, CNF/PANa and CNF-FH after

immersion in 6 M KOH and 0.2 M ZnAc;, solutions.
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Figure S17. The electrolyte retention capacity at the not-wrapped stated PANa-HE, CNF/PANa-HE and CNF-FHEs.
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Figure $18. Nyquist plots at -80 °C of PANa, CNF/PANa and CNF-FHEs.
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Figure $19. lonic conductivity at -80 °C of PANa, CNF/PANa and CNF-FHEs.
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Figure S20. Discharge/charge polarization curves of the FZAB-PC, CNF-FZAB-PC and CNF-FZAB-PF.
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74 Figure S21. Galvanostatic discharge/charge cycling tests of the CNF-FZAB-PF at 0.1 mA cm2, 0.25 mA cm2, 0.5 mA

75 cm2and 1 mA cm2 with 20 min per cycle.
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77 Figure S22. EDS mapping of Zinc foil surface.
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Figure S24. EDS mapping of Zinc foil surface of FZAB-PC after cycling for 100 cycles.
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Figure S26. EDS mapping of Zinc foil surface of CNF-FZAB-PC after cycling for 100 cycles.
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Figure S27. EDS mapping of Zinc foil section of CNF-FZAB-PC after cycling for 100 cycles.
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Figure S28. XRD of the zinc anode of zinc foil, FZAB-PC and CNF-FZAB-PC after cycling.



